• Title/Summary/Keyword: traffic detection system

Search Result 532, Processing Time 0.033 seconds

Study on Incident Detection System Using Fuzzy Logic

  • Kim, Intaek;Lee, Eunggi
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.268-271
    • /
    • 1998
  • this paper presents the potential application of fuzzy logic to the automatic incident detection system. While the conventional incident detection algorithms are based on a binary decision process, the algorithm using fuzzy logic can incorporate ambiguity which occurs in determining incidents. Since collecting good amount of data to construct data base for incidents is pretty expensive, a traffic simulator called FRESIM is used to simulate traffic condition in a freeway. Incident data are obtained by changing input parameters of the simulator and the fuzzy algorithm generates fuzzy rule for determining normal and incident traffic conditions. In this paper, various steps are described to test the algorithm and its results are summarized.

  • PDF

Highway Incident Detection and Classification Algorithms using Multi-Channel CCTV (다채널 CCTV를 이용한 고속도로 돌발상황 검지 및 분류 알고리즘)

  • Jang, Hyeok;Hwang, Tae-Hyun;Yang, Hun-Jun;Jeong, Dong-Seok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.23-29
    • /
    • 2014
  • The advanced traffic management system of intelligent transport systems automates the related traffic tasks such as vehicle speed, traffic volume and traffic incidents through the improved infrastructures like high definition cameras, high-performance radar sensors. For the safety of road users, especially, the automated incident detection and secondary accident prevention system is required. Normally, CCTV based image object detection and radar based object detection is used in this system. In this paper, we proposed the algorithm for real time highway incident detection system using multi surveillance cameras to mosaic video and track accurately the moving object that taken from different angles by background modeling. We confirmed through experiments that the video detection can supplement the short-range shaded area and the long-range detection limit of radar. In addition, the video detection has better classification features in daytime detection excluding the bad weather condition.

Development of Traffic Congestion Prediction Module Using Vehicle Detection System for Intelligent Transportation System (ITS를 위한 차량검지시스템을 기반으로 한 교통 정체 예측 모듈 개발)

  • Sin, Won-Sik;Oh, Se-Do;Kim, Young-Jin
    • IE interfaces
    • /
    • v.23 no.4
    • /
    • pp.349-356
    • /
    • 2010
  • The role of Intelligent Transportation System (ITS) is to efficiently manipulate the traffic flow and reduce the cost in logistics by using the state of the art technologies which combine telecommunication, sensor, and control technology. Especially, the hardware part of ITS is rapidly adapting to the up-to-date techniques in GPS and telematics to provide essential raw data to the controllers. However, the software part of ITS needs more sophisticated techniques to take care of vast amount of on-line data to be analyzed by the controller for their decision makings. In this paper, the authors develop a traffic congestion prediction model based on several different parameters from the sensory data captured in the Vehicle Detection System (VDS). This model uses the neural network technology in analyzing the traffic flow and predicting the traffic congestion in the designated area. This model also validates the results by analyzing the errors between actual traffic data and prediction program.

SPACE-BASED OCEAN SURVEILLANCE AND SUPPORT CAPABILITY

  • Yang Chan-Su
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.253-256
    • /
    • 2005
  • The use of satellite remote sensing in maritime safety and security can aid in the detection of illegal fishing activities and provide more efficient use of limited aircraft or patrol craft resources. In the area of vessel traffic monitoring for commercial vessels, Vessel Traffic Service (VTS) which use the ground-based radar system have some difficulties in detecting moving ships due to the limited detection range. A virtual vessel traffic control system is introduced to contribute to prevent a marine accident such as collision and stranding from happening. Existing VTS has its limit. The virtual vessel traffic control system consists of both data acquisition by satellite remote sensing and a simulation of traffic environment stress based on the satellite data, remotely sensed data. And it could be used to provide timely and detailed information about the marine safety, including the location, speed and direction of ships, and help us operate vessels safely and efficiently. If environmental stress values are simulated for the ship information derived from satellite data, proper actions can be taken to prevent accidents. Since optical sensor has a high spatial resolution, JERS satellite data are used to track ships and extract their information. We present an algorithm of automatic identification of ship size and velocity. This paper lastly introduce the field testing results of ship detection by RADARSAT SAR imagery, and propose a new approach for a Vessel Monitoring System(VMS), including VTS, and SAR combination service.

  • PDF

Traffic Flow Sensing Using Wireless Signals

  • Duan, Xuting;Jiang, Hang;Tian, Daxin;Zhou, Jianshan;Zhou, Gang;E, Wenjuan;Sun, Yafu;Xia, Shudong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3858-3874
    • /
    • 2021
  • As an essential part of the urban transportation system, precise perception of the traffic flow parameters at the traffic signal intersection ensures traffic safety and fully improves the intersection's capacity. Traditional detection methods of road traffic flow parameter can be divided into the micro and the macro. The microscopic detection methods include geomagnetic induction coil technology, aerial detection technology based on the unmanned aerial vehicles (UAV) and camera video detection technology based on the fixed scene. The macroscopic detection methods include floating car data analysis technology. All the above methods have their advantages and disadvantages. Recently, indoor location methods based on wireless signals have attracted wide attention due to their applicability and low cost. This paper extends the wireless signal indoor location method to the outdoor intersection scene for traffic flow parameter estimation. In this paper, the detection scene is constructed at the intersection based on the received signal strength indication (RSSI) ranging technology extracted from the wireless signal. We extracted the RSSI data from the wireless signals sent to the road side unit (RSU) by the vehicle nodes, calibrated the RSSI ranging model, and finally obtained the traffic flow parameters of the intersection entrance road. We measured the average speed of traffic flow through multiple simulation experiments, the trajectory of traffic flow, and the spatiotemporal map at a single intersection inlet. Finally, we obtained the queue length of the inlet lane at the intersection. The simulation results of the experiment show that the RSSI ranging positioning method based on wireless signals can accurately estimate the traffic flow parameters at the intersection, which also provides a foundation for accurately estimating the traffic flow state in the future era of the Internet of Vehicles.

Traffic Anomaly Detection for Campus Networks using Fisher Linear Discriminant (Fisher 선형 분류법을 이용한 비정상 트래픽 탐지)

  • Park, Hyun-Hee;Kim, Mee-Joung;Kang, Chul-Hee
    • Journal of IKEEE
    • /
    • v.13 no.2
    • /
    • pp.140-149
    • /
    • 2009
  • Traffic anomaly detection is one of important technology that should be considered in network security and administration. In this paper, we propose an abnormal traffic detection mechanism that includes traffic monitoring and traffic analysis. We develop analytical passive monitoring system called WISE-Mon which can inspect traffic behavior. We establish a criterion by analyzing the characteristics of a traffic training set. To detect abnormal traffic, we derive a hyperplane by using Fisher linear discriminant and chi-square distribution as well as the analyzed characteristics of traffic. Our mechanism can support reliable results for traffic anomaly detection and is compatible to real-time detection. In addition, since the trend of traffic can be changed as time passes, the hyperplane has to be updated periodically to reflect the changes. Accordingly, we consider the self-learning algorithm which reflects the trend of the traffic and so enables to increase the pliability of detection probability. Numerical results are presented to validate the accuracy of proposed mechanism. It shows that the proposed mechanism is reliable and relevant for traffic anomaly detection.

  • PDF

A Study on Traffic Light Detection (TLD) as an Advanced Driver Assistance System (ADAS) for Elderly Drivers

  • Roslan, Zhafri Hariz;Cho, Myeon-gyun
    • International Journal of Contents
    • /
    • v.14 no.2
    • /
    • pp.24-29
    • /
    • 2018
  • In this paper, we propose an efficient traffic light detection (TLD) method as an advanced driver assistance system (ADAS) for elderly drivers. Since an increase in traffic accidents is associated with the aging population and an increase in elderly drivers causes a serious social problem, the provision of ADAS for older drivers via TLD is becoming a necessary(Ed: verify word choice: necessary?) public service. Therefore, we propose an economical TLD method that can be implemented with a simple black box (built in camera) and a smartphone in the near future. The system utilizes a color pre-processing method to differentiate between the stop and go signals. A mathematical morphology algorithm is used to further enhance the traffic light detection and a circular Hough transform is utilized to detect the traffic light correctly. From the simulation results of the computer vision and image processing based on a proposed algorithm on Matlab, we found that the proposed TLD method can detect the stop and go signals from the traffic lights not only in daytime, but also at night. In the future, it will be possible to reduce the traffic accident rate by recognizing the traffic signal and informing the elderly of how to drive by voice.

Vision based Traffic Light Detection and Recognition Methods for Daytime LED Traffic Light (비전 기반 주간 LED 교통 신호등 인식 및 신호등 패턴 판단에 관한 연구)

  • Kim, Hyun-Koo;Park, Ju H.;Jung, Ho-Youl
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.3
    • /
    • pp.145-150
    • /
    • 2014
  • This paper presents an effective vision based method for LED traffic light detection at the daytime. First, the proposed method calculates horizontal coordinates to set region of interest (ROI) on input sequence images. Second, the proposed uses color segmentation method to extract region of green and red traffic light. Next, to classify traffic light and another noise, shape filter and haar-like feature value are used. Finally, temporal delay filter with weight is applied to remove blinking effect of LED traffic light, and state and weight of traffic light detection are used to classify types of traffic light. For simulations, the proposed method is implemented through Intel Core CPU with 2.80 GHz and 4 GB RAM, and tested on the urban and rural road video. Average detection rate of traffic light is 94.50 % and average recognition rate of traffic type is 90.24 %. Average computing time of the proposed method is 11 ms.

교차로 사고음 검지시스템의 방해음향 조사연구

  • Kang, Hee-Koo;Go, Young-Gwon;Kim, Jae-Yee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.805-808
    • /
    • 2008
  • In this paper, it was performed the analysis on various intersection acoustic patterns for detection rate improvement of accident sound detection system : an acoustic pattern analysis on general traffic noise, an acoustic pattern analysis on engine noise, an acoustic pattern analysis on obstruct factors for accident sound detection system. There are remarkable differences between the acoustic patterns of traffic noise and accident sound, and we most consider the acoustic patterns when we compose the accident traffic detection system by acoustic because there is error range of 20[dB] according to the volume of traffic in intersection.

  • PDF

A Study on the Measurement of Intruding Vehicles Enforcement System of Traffic Jam (끼어들기위반 단속장비의 교통정체 측정에 관한 연구)

  • Yoo, Sung-Jun;Kim, Jun-Ha;Hong, Soon-Jin;Kang, Soo-Chul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.6
    • /
    • pp.68-77
    • /
    • 2013
  • This study suggested experimental study results of congestion detection method for intruding vehicle enforcement system. This congestion detection method is developed to determine optimal operation criteria of intruding vehicle enforcement system as detecting traffic congestion. In ITS sector, traffic management systems generally have used a sectional travel speed for congestion detection. However, image sensors have high error rate of congestion detection because of speed error. This study suggested comprehensive congestion detection criteria based on speed and occupancy rate using field studies. As field study results, the proposed intruding vehicle enforcement system using image sensor is capable of accurately detecting the traffic congestion using sectional speed of 20km/h and occupancy rate of 60% as congestion detection criteria.