• Title/Summary/Keyword: traffic detection system

Search Result 532, Processing Time 0.028 seconds

Development of a Vehicle Tracking Algorithm using Automatic Detection Line Calculation (검지라인 자동계산을 이용한 차량추적 알고리즘 개발)

  • Oh, Ju-Taek;Min, Joon-Young;Hur, Byung-Do;Kim, Myung-Seob
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.4
    • /
    • pp.265-273
    • /
    • 2008
  • Video Image Processing (VIP) for traffic surveillance has been used not only to gather traffic information, but also to detect traffic conflicts and incident conditions. This paper presents a system development of gathering traffic information and conflict detection based on automatic calculation of pixel length within the detection zone on a Video Detection System (VDS). This algorithm improves the accuracy of traffic information using the automatic detailed line segmentsin the detection zone. This system also can be applied for all types of intersections. The experiments have been conducted with CCTV images, installed at a Bundang intersection, and verified through comparison with a commercial VDS product.

A Study on the Possibility of Using the Aerial-Based Vehicle Detection System for Real-Time Traffic Data Collection (항공 기반 차량검지시스템의 실시간 교통자료 수집에의 활용 가능성에 관한 연구)

  • Baik, Nam Cheol;Lee, Sang Hyup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2D
    • /
    • pp.129-136
    • /
    • 2012
  • In the US, Japan and Germany the Aerial-Based Vehicle Detection System, which collects real-time traffic data using the Unmanned Aerial Vehicle (UAV), helicopters or fixed-wing aircraft has been developed for the last several years. Therefore, this study was done to find out whether the Aerial-Based Vehicle Detection System could be used for real-time traffic data collection. For this purpose the study was divided into two parts. In the first part the possibility of retrieving real-time traffic data such as travel speed from the aerial photographic image using the image processing technique was examined. In the second part the quality of the retrieved real-time traffic data was examined to find out whether the data are good enough to be used as traffic information source. Based on the results of examinations we could conclude that it would not be easy for the Aerial- Based Vehicle Detection System to replace the present Vehicle Detection System due to technological difficulties and high cost. However, the system could be effectively used to make the emergency traffic management plan in case of incidents such as abrupt heavy rain, heavy snow, multiple pile-up, etc.

Traffic Light Detection Method in Image Using Geometric Analysis Between Traffic Light and Vision Sensor (교통 신호등과 비전 센서의 위치 관계 분석을 통한 이미지에서 교통 신호등 검출 방법)

  • Choi, Changhwan;Yoo, Kook-Yeol;Park, Yongwan
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.2
    • /
    • pp.101-108
    • /
    • 2015
  • In this paper, a robust traffic light detection method is proposed by using vision sensor and DGPS(Difference Global Positioning System). The conventional vision-based detection methods are very sensitive to illumination change, for instance, low visibility at night time or highly reflection by bright light. To solve these limitations in visual sensor, DGPS is incorporated to determine the location and shape of traffic lights which are available from traffic light database. Furthermore the geometric relationship between traffic light and vision sensor is used to locate the traffic light in the image by using DGPS information. The empirical results show that the proposed method improves by 51% in detection rate for night time with marginal improvement in daytime environment.

An Implementation of Traffic Accident Detection System at Intersection based on Image and Sound (영상과 음향 기반의 교차로내 교통사고 검지시스템의 구현)

  • 김영욱;권대길;박기현;이경복;한민홍;이형석
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.6
    • /
    • pp.501-509
    • /
    • 2004
  • The frequency of car accidents is very high at the intersection. Because of the state of a traffic signal, quarrels happen after accidents. At night many cars run away after causing an accident. In this case, accident analyses have been conducted by investigating evidences such as eyewitness accounts, tire tracks, fragments of the car or collision traces of the car. But these evidences that don't have enough objectivity cause an error in judgment. In the paper, when traffic accidents happen, the traffic accident detection system that stands on the basis of images and sounds detects traffic accidents to acquire abundant evidences. And, this system transmits 10 seconds images to the traffic center through the wired net and stores images to the Smart Media Card. This can be applied to various ways such as accident management, accident DB construction, urgent rescue after awaring the accident, accident detection in tunnel and in inclement weather.

Real-time Speed Limit Traffic Sign Detection System for Robust Automotive Environments

  • Hoang, Anh-Tuan;Koide, Tetsushi;Yamamoto, Masaharu
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.4
    • /
    • pp.237-250
    • /
    • 2015
  • This paper describes a hardware-oriented algorithm and its conceptual implementation in a real-time speed limit traffic sign detection system on an automotive-oriented field-programmable gate array (FPGA). It solves the training and color dependence problems found in other research, which saw reduced recognition accuracy under unlearned conditions when color has changed. The algorithm is applicable to various platforms, such as color or grayscale cameras, high-resolution (4K) or low-resolution (VGA) cameras, and high-end or low-end FPGAs. It is also robust under various conditions, such as daytime, night time, and on rainy nights, and is adaptable to various countries' speed limit traffic sign systems. The speed limit traffic sign candidates on each grayscale video frame are detected through two simple computational stages using global luminosity and local pixel direction. Pipeline implementation using results-sharing on overlap, application of a RAM-based shift register, and optimization of scan window sizes results in a small but high-performance implementation. The proposed system matches the processing speed requirement for a 60 fps system. The speed limit traffic sign recognition system achieves better than 98% accuracy in detection and recognition, even under difficult conditions such as rainy nights, and is implementable on the low-end, low-cost Xilinx Zynq automotive Z7020 FPGA.

Traffic Extraction and Verification for Attack Detection Experimentation (공격탐지 실험을 위한 네트워크 트래픽 추출 및 검증)

  • Park, In-Sung;Lee, Eun-Young;Oh, Hyung-Geun;Lee, Do-Hoon
    • Convergence Security Journal
    • /
    • v.6 no.4
    • /
    • pp.49-57
    • /
    • 2006
  • Firewall to block a network access of unauthorized IP system and IDS (Intrusion Detection System) to detect malicious code pattern to be known consisted the main current of the information security system at the past. But, with rapid growth the diffusion speed and damage of malicious code like the worm, study of the unknown attack traffic is processed actively. One of such method is detection technique using traffic statistics information on the network viewpoint not to be an individual system. But, it is very difficult but to reserve traffic raw data or statistics information. Therefore, we present extraction technique of a network traffic Raw data and a statistics information like the time series. Also, We confirm the validity of a mixing traffic and show the evidence which is suitable to the experiment.

  • PDF

Traffic Signal Detection and Recognition Using a Color Segmentation in a HSI Color Model (HSI 색상 모델에서 색상 분할을 이용한 교통 신호등 검출과 인식)

  • Jung, Min Chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.92-98
    • /
    • 2022
  • This paper proposes a new method of the traffic signal detection and the recognition in an HSI color model. The proposed method firstly converts a ROI image in the RGB model to in the HSI model to segment the color of a traffic signal. Secondly, the segmented colors are dilated by the morphological processing to connect the traffic signal light and the signal light case and finally, it extracts the traffic signal light and the case by the aspect ratio using the connected component analysis. The extracted components show the detection and the recognition of the traffic signal lights. The proposed method is implemented using C language in Raspberry Pi 4 system with a camera module for a real-time image processing. The system was fixedly installed in a moving vehicle, and it recorded a video like a vehicle black box. Each frame of the recorded video was extracted, and then the proposed method was tested. The results show that the proposed method is successful for the detection and the recognition of traffic signals.

A Pilot Study to Deploy the Railway Conflict Detection and Resolution System in Korean Railway (열차경합 검지 및 해소시스템의 한국철도 적용에 관한 선행연구)

  • 오석문;홍순흠;최인찬
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.2
    • /
    • pp.71-76
    • /
    • 2004
  • In this paper, we propose a pilot study to deploy the Railway Conflict Detection and Resolution System(RCDRS) in the context of Korean Railway(KORAIL). KORAIL plans to deploy in near future RCDRS, which is a decision support module placed on the top level of the Railway Traffic Management System(RTMS). This study entails the review of the state-of-art researches and projects in the field of the railway traffic management, as well as the analysis of the traffic characteristics of the major railroad lines in KORAIL. The analysis provides a basis to choose a solution approach for the railway conflict detection and resolution problem that each individual line faces. This study plays a role as a pilot study for a full systematic approach, in which interactions between lines require further advanced analysis to take the entire KORAIL lines into consideration rather than a myopic approach.

A Video Traffic Flow Detection System Based on Machine Vision

  • Wang, Xin-Xin;Zhao, Xiao-Ming;Shen, Yu
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1218-1230
    • /
    • 2019
  • This study proposes a novel video traffic flow detection method based on machine vision technology. The three-frame difference method, which is one kind of a motion evaluation method, is used to establish initial background image, and then a statistical scoring strategy is chosen to update background image in real time. Finally, the background difference method is used for detecting the moving objects. Meanwhile, a simple but effective shadow elimination method is introduced to improve the accuracy of the detection for moving objects. Furthermore, the study also proposes a vehicle matching and tracking strategy by combining characteristics, such as vehicle's location information, color information and fractal dimension information. Experimental results show that this detection method could quickly and effectively detect various traffic flow parameters, laying a solid foundation for enhancing the degree of automation for traffic management.

Design and Implementation of an SNMP-Based Traffic Flooding Attack Detection System (SNMP 기반의 실시간 트래픽 폭주 공격 탐지 시스템 설계 및 구현)

  • Park, Jun-Sang;Kim, Sung-Yun;Park, Dai-Hee;Choi, Mi-Jung;Kim, Myung-Sup
    • The KIPS Transactions:PartC
    • /
    • v.16C no.1
    • /
    • pp.13-20
    • /
    • 2009
  • Recently, as traffic flooding attacks such as DoS/DDoS and Internet Worm have posed devastating threats to network services, rapid detection and proper response mechanisms are the major concern for secure and reliable network services. However, most of the current Intrusion Detection Systems (IDSs) focus on detail analysis of packet data, which results in late detection and a high system burden to cope with high-speed network traffic. In this paper we propose an SNMP-based lightweight and fast detection algorithm for traffic flooding attacks, which minimizes the processing and network overhead of the detection system, minimizes the detection time, and provides high detection rate. The attack detection algorithm consists of three consecutive stages. The first stage determines the detection timing using the update interval of SNMP MIB. The second stage analyzes attack symptoms based on correlations of MIB data. The third stage determines whether an attack occurs or not and figure out the attack type in case of attack.