• 제목/요약/키워드: tradeoff

검색결과 394건 처리시간 0.024초

Multibaseline based Stereo Matching Using Texture adaptive Belief Propagation Technique (다중 베이스라인 기반 질감 적응적 신뢰도 전파 스테레오 정합 기법)

  • Kim, JinHyung;Ko, Yun Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • 제50권1호
    • /
    • pp.75-85
    • /
    • 2013
  • To acquire depth information using stereo vision, it is required to find correspondence points between stereo image pair. Conventional stereo vision systems usually use two cameras to get disparity data. Therefore, conventional stereo matching methods cannot resolve the tradeoff problem between accuracy and precision with respect to the length of baseline. Besides, belief propagation method, which is being used recently, has a problem that matching performance is dependent on the fixed weight parameter ${\lambda}$. In this paper, we propose a modified belief propagation stereo matching technique based on multi-baseline stereo vision to solve the tradeoff problem. The proposed method calculates EMAD(extended mean of absolute differences) as local evidence. And proposed method decides weight parameter ${\lambda}$ adaptively to local texture information. The proposed method shows higher initial matching performance than conventional methods and reached optimum solution in less iteration. The matching performance is increased about 4.85 dB in PSNR.

Relay Station based Optimal Handoff Prioritization Control Algorithm (Relay Station 기반 최적 핸드오프 우선화 제어 알고리즘)

  • Yu, Hye-In;Kang, Hae-Lynn;Kim, Nak-Myeong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • 제46권7호
    • /
    • pp.24-31
    • /
    • 2009
  • Resource reservation scheme is an effective method to guarantee QoS for handoff calls in the next generation multimedia mobile communication systems, but it causes negative impacts on blocking probability of new calls. In this paper, to optimize the tradeoff between dropping probability of handoff calls and blocking probability of new calls, relay station based handoff prioritization control algorithm is proposed. In this algorithm, the relay station participates in handoff procedure and enables mobile stations to have guaranteed prompt service after handoff by providing highly efficient data transmission. In this paper, Markov chain models of the proposed handoff prioritization schemes are developed, and dropping probability of handoff packets and blocking probability of new packets are derived. By numerical analysis, the proposed algorithm has been proved to outperform conventional handoff prioritization schemes in terms of dropping probability of handoff packets and blocking Probability of new packets.

Throughput of Wi-Fi network based on Range-aware Transmission Coverage (가변 전송 커버리지 기반의 Wi-Fi 네트워크에서의 데이터 전송률)

  • Zhang, Jie;Lee, Goo Yeon;Kim, Hwa Jong
    • Journal of Digital Contents Society
    • /
    • 제14권3호
    • /
    • pp.349-356
    • /
    • 2013
  • Products of Wi-Fi devices in recent years offer higher throughput and have longer signal coverage which also bring unnecessary signal interference to neighboring wireless networks, and result in decrease of network throughput. Signal interference is an inevitable problem because of the broadcast nature of wireless transmissions. However it could be optimized by reducing signal coverage of wireless devices. On the other hand, smaller signal coverage also means lower transmission power and lower data throughput. Therefore, in this paper, we analyze the relationship among signal strength, coverage and interference of Wi-Fi networks, and as a tradeoff between transmission power and data throughput, we propose a range-aware Wi-Fi network scheme which controls transmission power according to positions and RSSI(Received Signal Strength Indication) of Wi-Fi devices and analyze the efficiency of the proposed scheme by simulation.

Load-Balancing Rendezvous Approach for Mobility-Enabled Adaptive Energy-Efficient Data Collection in WSNs

  • Zhang, Jian;Tang, Jian;Wang, Zhonghui;Wang, Feng;Yu, Gang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권3호
    • /
    • pp.1204-1227
    • /
    • 2020
  • The tradeoff between energy conservation and traffic balancing is a dilemma problem in Wireless Sensor Networks (WSNs). By analyzing the intrinsic relationship between cluster properties and long distance transmission energy consumption, we characterize three node sets of the cluster as a theoretical foundation to enhance high performance of WSNs, and propose optimal solutions by introducing rendezvous and Mobile Elements (MEs) to optimize energy consumption for prolonging the lifetime of WSNs. First, we exploit an approximate method based on the transmission distance from the different node to an ME to select suboptimal Rendezvous Point (RP) on the trajectory for ME to collect data. Then, we define data transmission routing sequence and model rendezvous planning for the cluster. In order to achieve optimization of energy consumption, we specifically apply the economic theory called Diminishing Marginal Utility Rule (DMUR) and create the utility function with regard to energy to develop an adaptive energy consumption optimization framework to achieve energy efficiency for data collection. At last, Rendezvous Transmission Algorithm (RTA) is proposed to better tradeoff between energy conservation and traffic balancing. Furthermore, via collaborations among multiple MEs, we design Two-Orbit Back-Propagation Algorithm (TOBPA) which concurrently handles load imbalance phenomenon to improve the efficiency of data collection. The simulation results show that our solutions can improve energy efficiency of the whole network and reduce the energy consumption of sensor nodes, which in turn prolong the lifetime of WSNs.

Generalized Sub-optimum Decoding for Space-Time Trellis Codes in Quasistatic Flat Fading Channel (준정적 플랫 페이딩 채널에서 시공간 트렐리스 부호의 일반화된 부최적 복호법)

  • Kim Young Ju;Shin Sang Sup;Kang Hyun-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • 제43권1호
    • /
    • pp.89-94
    • /
    • 2006
  • We present a generalized version of principal ratio combining (PRC)[1], which is a near-optimum decoding scheme for space-time trellis codes in quasi-static flat fading environments. In [1], the performance penalty increases as the number of receive antennas increases. In the proposed scheme, receive antennas are divided into K groups, and the PRC decoding method is applied to each group. This shows a flexible tradeoff between performance and decoding complexity by choosing the appropriate K. Moreover, we also propose the performance index(PI) to easily predict the decoding performance among the possible different(receive antenna) configurations.

A Reverberation Cancellation Method Using the Escalator Algorithm in Active Sonar (능동 소오나에서 에스컬레이터 알고리즘을 이용한 잔향음 제거 기법)

  • 박경주;김수언;유경렬;나정열
    • The Journal of the Acoustical Society of Korea
    • /
    • 제20권6호
    • /
    • pp.17-25
    • /
    • 2001
  • Traditional adaptive noise cancelling methods rely their performance on various interfering parameters, such as convergence speed, tracking ability, numerical stability, relative frequency characteristics between target and reverberation signals, and activity of the target. In this paper, an adaptive noise cancelling method is suggested, which Provides a successful tradeoff mon these factors. It is designed to work on the transform domain, adopts the Gram-Schmidt orthogonalization process, and is implemented by the escalator algorithm. The transform domain approach supports a tradeoff between the convergence speed and numerical cost. The proposed method is verified by applying a real-data collected in the shallow waters off the east coasts of korea. It is shown that it has a good reverberation-rejection capability even for the target signal with adjacent frequency components to those of the reverberation, and its performance is invariant for the activity of the target.

  • PDF

Hardware Design of Bilateral Filter Based on Window Division (윈도우 분할 기반 양방향 필터의 하드웨어 설계)

  • Hyun, Yongho;Park, Taegeun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제41권12호
    • /
    • pp.1844-1850
    • /
    • 2016
  • The bilateral filter can reduce the noise while preserving details computing the filtering output at each pixels as the average of neighboring pixels. In this paper, we propose a real-time system based on window division. Overall performance is increased due to the parallel architectures which computes five rows in the kernel window simultaneously but with pipelined scheduling. We consider the tradeoff between the filter performance and the hardware cost and the bit allocation has been determined by PSNR analysis. The proposed architecture is designed with verilogHDL and synthesized using Dongbu Hitek 110nm standard cell library. The proposed architecture shows 416Mpixels/s (397fps) of throughput at 416MHz of operating frequency with 132K gates.

Energy-efficient Buffer-aided Optimal Relay Selection Scheme with Power Adaptation and Inter-relay Interference Cancellation

  • Xu, Xiaorong;Li, Liang;Yao, Yingbiao;Jiang, Xianyang;Hu, Sanqing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권11호
    • /
    • pp.5343-5364
    • /
    • 2016
  • Considering the tradeoff between energy consumption and outage behavior in buffer-aided relay selection, a novel energy-efficient buffer-aided optimal relay selection scheme with power adaptation and Inter-Relay Interference (IRI) cancellation is proposed. In the proposed scheme, energy consumption minimization is the objective with the consideration of relay buffer state, outage probability and relay power control, in order to eliminate IRI. The proposed scheme selects a pair of optimal relays from multiple candidate relays, denoted as optimal receive relay and optimal transmit relay respectively. Source-relay and relay-destination communications can be performed within a time-slot, which performs as Full-Duplex (FD) relaying. Markov chain model is applied to analyze the evolution of relay buffer states. System steady state outage probability and achievable diversity order are derived respectively. In addition, packet transmission delay and power reduction performance are investigated with a specific analysis. Numerical results show that the proposed scheme outperforms other relay selection schemes in terms of outage behavior with power adaptation and IRI cancellation in the same relay number and buffer size scenario. Compared with Buffer State relay selection method, the proposed scheme reduces transmission delay significantly with the same amount of relays. Average transmit power reduction can be implemented to relays with the increasing of relay number and buffer size, which realizes the tradeoff between energy-efficiency, outage behavior and delay performance in green cooperative communications.

Genetic Algorithm based Methodology for Network Performance Optimization (유전자 알고리즘을 이용한 WDM 네트워크 최적화 방법)

  • Yang, Hyo-Sik
    • Journal of the Institute of Convergence Signal Processing
    • /
    • 제9권1호
    • /
    • pp.39-45
    • /
    • 2008
  • This paper considers the multi-objective optimization of a multi-service arrayed waveguide grating-based single-hop WDM network with the two conflicting objectives of maximizing throughput while minimizing delay. This paper presents a genetic algorithm based methodology for finding the optimal throughput-delay tradeoff curve, the so-called Pareto-optimal frontier. Genetic algorithm based methodology provides the network architecture parameters and the Medium Access Control protocol parameters that achieve the Pareto-optima in a computationally efficient manner. The numerical results obtained with this methodology provide the Pareto-optimal network planning and operation solution for a wide range of traffic scenarios. The presented methodology is applicable to other networks with a similar throughput-delay tradeoff.

  • PDF

A Pareto Ant Colony Optimization Algorithm for Application-Specific Routing in Wireless Sensor & Actor Networks (무선 센서 & 액터 네트워크에서 주문형 라우팅을 위한 파레토 개미 집단 최적화 알고리즘)

  • Kang, Seung-Ho;Choi, Myeong-Soo;Jung, Min-A;Lee, Seong-Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제36권4B호
    • /
    • pp.346-353
    • /
    • 2011
  • Routing schemes that service applications with various delay times, maintaining the long network life time are required in wireless sensor & actor networks. However, it is known that network lifetime and hop count of trees used in routing methods have the tradeoff between them. In this paper, we propose a Pareto Ant Colony Optimization algorithm to find the Pareto tree set such that it optimizes these both tradeoff objectives. As it enables applications which have different delay times to select appropriate routing trees, not only satisfies the requirements of various multiple applications but also guarantees long network lifetime. We show that the Pareto tree set found by proposed algorithm consists of trees that are closer to the Pareto optimal points in terms of hop count and network lifetime than minimum spanning tree which is a representative routing tree.