• 제목/요약/키워드: tracer model

검색결과 184건 처리시간 0.029초

산림소유역에서 주요 유출성분 분석을 위한 천연추적자의 탐색 (Searching the Natural Tracers for Separation of Runoff Components in a Small Forested Catchment)

  • 유재윤;김경하;전재홍;최형태;정용호
    • 한국환경복원기술학회지
    • /
    • 제9권4호
    • /
    • pp.52-59
    • /
    • 2006
  • This study was conducted to find end-members and tracers which are effective to be applied in the End Member Mixing Analysis (EMMA) model for runoff separation at the Gwangneung coniferous forest catchment (13.6ha), Gyeonggido, Korea. We monitored three successive rainfall events during two weeks from June 26, 2005 to July 10, 2005, and analysed chemical properties of rainfall, throughfall, stemflow, groundwater and soil water considered as main components of storm runoff. The followings are the results of analyses of each component and tracer. Groundwater, soil water and rainfall (or throughfall) were dominant runoff components. Rainfall and groundwater were selected as main components for the two components-one tracer mixing model, and groundwater, soilwater and throughfall were selected as main components for the three components-two tracers mixing model. Tracers were selected from anion ($Cl^-$ and ${SO_4}^{2-}$), cation ($Na^+$, $K^+$, $Mg^{2+}$, and $Ca^{2+}$) and Acid Neutralizing Capacity (ANC) in event 1, 2, and 3. $Na^+$, $Ca^{2+}$ and ANC were selected in the two components-one tracer mixing model and ${SO_4}^{2-}-K^+$, ${SO_4}^{2-}-Na^+$, ${SO_4}^{2-}-Ca^{2+}$, ${SO_4}^{2-}$-ANC, and $Ca^{2+}$-ANC were selected in the three components-two tracers mixing model. Selected main runoff components and tracers can provide basic information to determine the contribution rate of each runoff component and identify the runoff process in a forest watershed.

분포형 강우-유출 모형의 매개변수 불확실성에 대한 시.공간적 유역 응답 (Catchment Responses in Time and Space to Parameter Uncertainty in Distributed Rainfall-Runoff Modeling)

  • 이기하;타카라 카오루;타치카와 야수토;사야마 타카히로
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.2215-2219
    • /
    • 2009
  • For model calibration in rainfall-runoff modeling, streamflow data at a specific outlet is obviously required but is not sufficient to identify parameters of a model since numerous parameter combinations can result in very similar model performance measures (i.e. objective functions) and indistinguishable simulated hydrographs. This phenomenon has been called 'equifinality' due to inherent parameter uncertainty involved in rainfall-runoff modeling. This study aims to investigate catchment responses in time and space to various uncertain parameter sets in distributed rainfall-runoff modeling. Seven plausible (or behavioral) parameter sets, which guarantee identically-good model performances, were sampled using deterministic and stochastic optimization methods entitled SCE and SCEM, respectively. Then, we applied them to a computational tracer method linked with a distributed rainfall-runoff model in order to trace and visualize potential origins of streamflow at a catchment outlet. The results showed that all hydrograph simulations based on the plausible parameter sets were performed equally well while internal catchment responses to them showed totally different aspects; different parameter values led to different distributions with respect to the streamflow origins in space and time despite identical simulated hydrographs. Additional information provided by the computational tracer method may be utilized as a complementary constraint for filtering out non-physical parameter set(s) (or reducing parameter uncertainty) in distributed rainfall-runoff modeling.

  • PDF

Analysis of Ventilation Performance Using a Model Chamber

  • Kang Tae-Wook;Chang Tae-Hyeon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권7호
    • /
    • pp.736-743
    • /
    • 2005
  • In this study, three different types of mechanical ventilation systems are compared based on their ventilation characteristics: tracer gas concentration decay characteristics, and ventilation effectiveness by calculating actual ventilation air flow rate. The experiments are performed by using a step-down method for measuring tracer gas. $CO_{2}$ gas, concentration in the model chamber. Application of a mixing factor, k, was used and measured values ranged from 0.68 to 0.77. The Type 2 ventilation system was found to have the highest ventilation effectiveness rather than the Types 1 and 3.

환기방식별 실내 환기효율 분석에 관한 실험적 연구 (An Experimental Analysis of Ventilation Effectiveness using Tracer Gas)

  • 강태욱
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권2호
    • /
    • pp.260-266
    • /
    • 2006
  • A tracer gas technique based on ASTM Standard E741-83 was used to measure ventilation performances in a model chamber ($0.84m{\times}0.68m{\times}0.7m$) with an exhaust fan and a supply fan. Experiments were performed for the ventilation effectiveness on three types of mechanical ventilation systems. For all cases. higher ventilation effectiveness was found in the type to ventilation system due to shorter residual time of air compared to type 1 and type 3.

유성지역 소유역에서 추적자(Cl)를 이용한 강우사상에 따른 지표수로부터 기저유출의 분리

  • 조성현;하규철;고동찬;조민조;송무영
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2005년도 총회 및 춘계학술발표회
    • /
    • pp.352-358
    • /
    • 2005
  • This study aims to separate hydrograph into baseflow and event water to calculate baseflow rate during a rainfall in small catchments, Yuseong, Daejeon, The hydrograph of stream during a period with no excess rainfall will decay. The discharge is composed entirely of groundwater contributions. During the period, the Cl concentration of the stream water can be regarded as being in equilibrium with that of the groundwater. Using Cl as a conservative tracer, two-component hydrograph separations were performed from end point of the period to next end point. The required data were obtained by monitoring of the surface water table, along with discharge rate of stream. Cl concentration of rainfall, surface water were measured and recorded. Hydrograph separation, a mixing model using chemical tracer is applied to chemical hydrograph separation technique. These results show that baseflow rates are 31.6% of rainfall in the catchments during study period.

  • PDF

초등학교 재량활동시간에 라인트레이서를 이용한 C프로그래밍 학습모형 (A C-Programming Learning Model Using a Line Tracer in Discretionary Activity Hours in Elementary Schools)

  • 문외식
    • 정보교육학회논문지
    • /
    • 제15권4호
    • /
    • pp.603-612
    • /
    • 2011
  • 최근 IT 및 융합기술 발달로 로봇이 컴퓨터를 대신하여 문제해결력, 알고리즘향상 학습을 위한 새로운 창의성교구로 각광을 받고 있다. 본 연구에서는 초등학교 고학년생이 재량활동시간에 라인트레이서를 이용하여 프로그래밍학습을 할 수 있도록 교육과정(12차시분)을 제안하고 성공 가능성을 평가하기 위해 차시별 학습결과물 중심으로 성취수준을 평가하였다. 결과로서, 실행오류의 분석을 통해 라인트레이서를 이용한 프로그래밍 학습이 컴퓨터프로그래밍 학습에 비해 창의성요소가 우수함을 확인하였다. 또한, 라인트레이서를 이용한 프로그래밍학습 방법은 컴퓨터를 대신할 새로운 창의성 학습도구로 성공할 수 있는 가능성을 확인하였다.

  • PDF

추적자 실험 및 3차원 수치모의를 이용한 저수지 수처리 장치의 영향반경 평가 (Assessing the Influence Radius of a Water Treatment System Installed in a Reservoir Using Tracer Experiment and 3D Numerical Simulation)

  • 박형석;이은주;지현서;최선화;정세웅
    • 한국수처리학회지
    • /
    • 제26권6호
    • /
    • pp.3-12
    • /
    • 2018
  • The objective of this study was to evaluate the radius of influence of effluent of water treatment system developed for the purpose of improvement of reservoir water quality using fluorescent dye (Rhodamine-WT) tracer experiment and 3-D numerical model. The tracer experiment was carried out in a medium-sized agricultural reservoir with a storage capacity of $227,000m^3$ and an average depth of 1.6 m. A guideline with a total length of 160 m was installed at intervals of 10 m in the horizontal direction from the discharge part, and a Rhodamine measurement sensor (YSI 6130, measurement range $0-200{\mu}g/L$) was used to measure concentration changes in time, distance, and depth. Experimental design was established in advance through Jet theory and the diffusion process was simulated using ELCOM, a three dimensional hydraulic dynamics model. As a result of the study, the direct effect radius of the jet emitted from the applied water treatment system was about 50-70 m, and the radius of physical effect by the advection diffusion was judged to be 100-120 m. The numerical simulations of effluent advection-diffusion of the water treatment system using ELCOM showed very similar results to those of the impact radius analysis using the tracer experiment and jet flow empirical equations. The results provide valuable information on the spatial extent of the water quality improvement devices installed in the reservoir and the facility layout design.

모세관 모델을 이용한 불포화토양의 물-가스 접촉면적 및 가스공극 크기분포의 계산 및 검증 (Capillary Bundle Model for the Estimation of Air-water Interfacial Area and the Gas-filled Pore Size Distribution in Unsaturated Soil)

  • 김헌기
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제26권1호
    • /
    • pp.1-7
    • /
    • 2021
  • Air-water interfacial area is of great importance for the analysis of contaminant mass transfer processes occurring in the soil systems. Capillary bundle model has been proposed to estimate the specific air-water interfacial areas in unsaturated soils. In this study, the measured air-water interfacial areas of a soil (loam) using the gaseous interfacial tracer technique were compared to those from capillary bundle model. The measured values converged to the specific solid surface area (7.6×104 ㎠/㎤) of the soil. However, the simulated air-water interfacial areas based on the capillary bundle model deviated significantly from those measured. The simulated values were substantially over-estimated at low end of the water content range, whereas the model under-estimated the air-water interfacial area for the most of the water content range. This under-estimation is considered to be caused by the nature of the capillary bundle model that replaces the soil pores with a bundle of glass capillaries and thus no surface roughness at the inner surface of the capillaries is taken into account for the estimation of the air-water interfacial area with the capillary bundle model. Subsequently, appropriate correction is necessary for the capillary bundle model to estimate the air-water interfacial area in soils. Since the soil-moisture release curve data is the basis of the capillary bundle model, the model can be of use due to its simplicity, while the gaseous tracer technique requires complicated experimental equipment followed by moment analysis of the breakthrough curves. The size distribution profile of the pores filled with gas estimated by the water retention curve was found to be similar to that of particle size at different size range. The shifted distribution of gas-filled pores toward smaller size side compared to the particle size distribution was also found.

고리 원전주변에서 야외 확산실험 모사 (Numerical Simulation for the Field Tracer Experiment over the Kori Nuclear Power Plant)

  • 서경석;김은한;황원태;정효준;한문희
    • Journal of Radiation Protection and Research
    • /
    • 제29권3호
    • /
    • pp.205-212
    • /
    • 2004
  • 대기중으로 방출된 방사성물질의 농도분포를 예측하기 위하여 3차원 바람장 및 확산모델을 개발하였다. 대기 확산모델의 검증을 위하여 복잡한 지형에 위치한 고리 원전 주변에서 야외 확산실험을 수행하였다. 확산모델의 계산 값에 가장 중요한 영향을 주는 것은 바람장의 분포이다. 따라서 관측된 바람자료를 이용하여 여러 경우에 대한 수치실험을 수행하여 계산 값이 관측 농도 값에 좀더 유사하게 접근하는 가를 살펴보았다. 비교결과 바람장 모델내 많은 관측 바람장을 이용한 경우에 관측 농도 값에 가장 근접함을 알 수 있었다.