• Title/Summary/Keyword: trace fossil

Search Result 18, Processing Time 0.022 seconds

The Sannae-Eonyang Granitic Rocks and Hydrothermal System, Southeastern Kyongsang Basin

  • Yang, Kyoung-Hee;Lee, Joon-Dong
    • Economic and Environmental Geology
    • /
    • v.33 no.1
    • /
    • pp.19-30
    • /
    • 2000
  • The Sannae-Eonyang granitic rocks are a large fossil hydrothermal system containing the Sannae Mo-W fissure-vein type and the Eonyang amethyst deposits in the southeastern Kyongsang Basin. They evolved through similar stages showing the similarities in chemical and mineralogical compositions, fractionation trends and early magmatic fluids. Major, trace and rare earth element(REE) variations can be accounted for fractional crystallization combined with variable degrees of metasomatism. Based on the aqueous fluids exsolved directly from the crystallizing melt, the Sannae-Eonyang granitic rocks were emplaced at similar depth or pressure conditions. High temperature fluid interaction with the granitic rocks affects the elements such as K, Na, Rb, Ba, Sr, Eu, and heavy REE (HREE) mostly through feldspar re-equilibration. Although hydrothermal fluids produced partly positive Eu anomalies and HREE depletion in the granitic rocks at the Sannae Mo-W mine, the chemical concentrations defining fractionnation trends have survived the effects of alteration. Aqueous fluids exsolved from the crystallizing melt appears to be widespread, whereas fluids of moderate to low salinity and low-density with relatively high homogenization temperatures and $Co_2$-rich fluids appear to be mainly restricted and responsible for Mo-W and amethyst mineralization, respectively. Hydrothermal system of the Sannae-Eonyang granitic rocks represents repeated fluid events; from exsolution of aqueous fluids from the crystallizing melt, through fluid immiscibility and meteoric convection to later mineralization.

  • PDF

Sm-Nd Isotopic Study of the Ogcheon Amphibolite, Korea: Priliminary Report (옥천 각섬암의 Sm-Nd 동위원소연구 : 예비보고서)

  • Kwon, Sung-Tack;Lan, Ching-Ying
    • Economic and Environmental Geology
    • /
    • v.24 no.3
    • /
    • pp.277-285
    • /
    • 1991
  • We applied Sm-Nd isotopic system to so-called amphibolites occurring within the Ogcheon group to provide constraints on the age of the metasedimentary rocks and to characterize tectonic environment of basaltic magmatism. An internal mineral isochron age of $677{\pm}91Ma({\sigma})$ was obtained from a coarse-grained, intrusive, amphibolite near Mungyeong. Considering previous studies on the age of the Ogcheon group, we interpret that the isochron represents either early metamorphic or emplacement age. The depositional age of the metasedimentary rocks intruded by the amphibolite would be prior to late Proterozoic. The present study and Cambro-Ordovician fossil evidences of previous workers suggest that both Precambrian and Phanerozoic rocks are present in the Ogcheon group. Positive ${\varepsilon}$ Nd values(+2.4 to +3.5) of four whole rocks indicate mantle origin for the amphibolite. These isotopic data, along with published immobile trace element data of Cluzel et al.(1989), strongly suggest that parental rocks of the amphibolite formed in an intraplate environment rather than in island arc or midocean ridge. The age and tectonic environment of amphibolites in the Ogcheon belt suggest that the basaltic magmatism may be related to the late Proterozoic break-up of a presumed supercontinent, but not to the Triassic(?) collision between North and South China continents.

  • PDF

The Present and the Future of Biogas Purification and Upgrading Technologies (바이오가스 정제 및 고질화 기술 현황 및 전망)

  • Heo, Namhyo;Park, Jaekyu;Kim, Kidong;Oh, Youngsam;Cho, Byounghak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.172-172
    • /
    • 2011
  • Anaerobic digestion(AD) has successfully been used for many applications that have conclusively demonstrated its ability to recycle biogenic wastes. AD has been successfully applied in industrial waste water treatment, stabilsation of sewage sludge, landfill management and recycling of biowaste and agricultural wastes as manure, energy crops. During AD, i.e. organic materials are decomposed by anaerobic forming bacteria and fina1ly converted to excellent fertilizer and biogas which is primarily composed of methane(CH4) and carbon dioxide(CO2) with smaller amounts of hydrogen sulfide(H2S) and ammonia(NH3), trace gases such as hydrogen(H2), nitrogen(N2), carbon monoxide(CO), oxygen(O2) and contain dust particles and siloxanes. The production and utilisation of biogas has several environmental advantages such as i)a renewable energy source, ii)reduction the release of methane to the atomsphere, iii)use as a substitute for fossil fuels. In utilisation of biogas, most of biogas produced from small scale plant e.g. farm-scale AD plant are used to provide as energy source for cooking and lighting, in most of the industrialised countries for energy recovery, environmental and safety reasons are used in combined heat and power(CHP) engines or as a supplement to natural. In particular, biogas to use as vehicle fuel or for grid injection there different biogas treatment steps are necessary, it is important to have a high energy content in biogas with biogas purification and upgrading. The energy content of biogas is in direct proportion to the methane content and by removing trace gases and carbon dioxide in the purification and upgrading process the energy content of biogas in increased. The process of purification and upgrading biogas generates new possibilities for its use since it can then replace natural gas, which is used extensively in many countries, However, those technologies add to the costs of biogas production. It is important to have an optimized purification and upgrading process in terms of low energy consumption and high efficiency giving high methane content in the upgraded gas. A number of technologies for purification and upgrading of biogas have been developed to use as a vehicle fuel or grid injection during the passed twenty years, and several technologies exist today and they are continually being improved. The biomethane which is produced from the purification and the upgrading process of biogas has gained increased attention due to rising oil and natural gas prices and increasing targets for renewable fuel quotes in many countries. New plants are continually being built and the number of biomethane plants was around 100 in 2009.

  • PDF

Long-term Characteristics of PM2.5 and Its Metallic Components in Chuncheon, Korea (춘천시 대기 중 PM2.5 및 금속성분의 장기간 농도 특성)

  • Byun, Jin-Yeo;Cho, Sung-Hwan;Kim, Hyun-Woong;Han, Young-Ji
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.3
    • /
    • pp.406-417
    • /
    • 2018
  • In this study, $PM_{2.5}$ samples were collected during approximately 3 years in Chuncheon, a small residential and tourist city, in Korea. The average $PM_{2.5}$ concentration was $26.9{\mu}g/m^3$, exceeding the annual national air quality standard. $PM_{2.5}$ showed typical seasonal variation, having higher concentration in winter and lower concentration in summer. Sixteen metallic elements in $PM_{2.5}$ were also analyzed, and K was the highest contributor especially in late fall and winter. In addition, K considerably increased for the top 10% of $PM_{2.5}$ samples and showed the highest correlation coefficient with $PM_{2.5}$ among all other metallic elements. These results suggest that the combustion of agricultural residue and other biomass, the major source of K was likely to be important to high $PM_{2.5}$ concentration events in this city. Crustal elements including Al, Fe, Si, Ti, Mg showed high concentration in spring while Cr, Cu and Ni were relatively consistent throughout a year. Principal component analysis was used to trace the sources, and soil re-suspension, combustion of biomass and fossil fuels, and asphalt concrete production were identified as the main sources of $PM_{2.5}$.

The Origin of Coastal Dunesand in the Chungcheongnam-do (해안사구의 물질 구설과 플라이스토세층 - 충청남도의 해안을 중심으로 -)

  • 강대균
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.4
    • /
    • pp.505-517
    • /
    • 2003
  • The purpose of this paper is to examine the origin of materials of sanddune in the Chungcheongnamdo. The sands consist mainly of quartz with lesser amount of feldspar and other heavy minerals. With the exception of those from the granite, the sands have a very fine texture. Another characteristic of the sand grains is the low degrees of roundness and grading which indicates that the source areas of the material are not far from the accumulating field. The rivers and streams of this region are not effective in transporting sediments for the coastal dunes. It has been recognized that the beaches and sanddunes have recently been receded as a result of the decrease in materials and the devastating actions of the breakers. The degradation process occurs most actively when the spring tides attack the beaches and foredunes. There are strata with red tint along the coastal areas of the Chungcheongnamdo which trace their origin back to the Pleistocene. From the fact that they contain little or no gravels, the strata are believed to have been the sanddunes during the last interglacial period. This fossil dunes provide part of the materials for the development of the present-day sanddunes along the coastal areas of the region.

The Characteristics of Secondary Carbonaceous Species within PM10 and PM2.5 in Seoul and Incheon Area (서울과 인천지역 PM10 과 PM2.5 중 2차생성 탄소성분 추정)

  • Park Jin Soo;Kim Shin Do
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.1
    • /
    • pp.131-140
    • /
    • 2005
  • To investigate secondary carbonaceous species within PM$_{10}$ and PM$_{2.5}$ in Seoul urban Metropolitan Area (SMA), Korea. atmospheric particulate matters samples were collected at two sites of SMA at UOS (The University Of Seoul station) sites and IHU (InHa University of Incheon station) during the period of 4 to 14 January and 12 to 22 May, 11 to 15 August 2004, and their characteristics were qualitatively discussed. during January and May and August of 2004. Daily average mass concentration 0.095 mg/㎥ in PM$_{10}$ and 0.053 mg/㎥ in PM$_{2.5}$ for mass respectively. were observed in SMA. The concentrations of carbonaceous species contributed 18.4% and 16.4% of PM$_{2.5}$ and PM$_{10}$ during the sampling period, respectively, of which OC accounted for 68% and 52% more of the total carbon (TC). OC and EC concentrations and their mass percentages were higher in PM$_{2.5}$ than in PM$_{10}$ which could be attributed to generation process. Organic aerosols would constitute up to 38% of PM$_{2.5}$ based on the evaluation of 1.6 for the ratio of OC to organic particulate. Secondary organic carbon (SOC) were estimated to be more than 13% and up to 68% of total OC based on the minimum OC/EC ratio of 1.06/1.11 using least square method. Comparisons of OC and EC with trace elements. As results of carbonaceous species analysis, the dominant factor in view of fine particle (PM$_{10}$/PM$_{2.5}$) is primary emission source such as mobile, fossil fuel combustion etc. during winter time in SMA. But in summer periods, remarkable fine particle increasing factor was secondary organic carbon dependent to photochemical reaction. reaction.n. reaction.

Archaeomagnetic Dating of a Layer of Baked Earth on Daegu Buinsa Site (대구 부인사 유적 소토층의 고고지자기 연대)

  • Sung, Hyong Mi
    • Journal of Conservation Science
    • /
    • v.28 no.3
    • /
    • pp.185-192
    • /
    • 2012
  • Issues of chronology on archaeological remains or relics have been a storm-center of controversy when various archaeological researches have been done. Sometimes there is a limit for figuring out issues of chronology by archaeological research. In that case, the field of natural science is often needed to work out issues of chronology. Among various subjects in natural science, archaeomagnetism plays an important role in dating archaeological remains for baked earth bearing relics. In particular, archaeomagnetism is of use for sites where directly excavated dating proxy is unavailable. Terrestrial magnetism changes along with the passage of time and leaves trace by many kinds of residual magnetization which could be called fossil of terrestrial magnetism. Archaeomagnetic dating method is used to assign a date to the archaeological remains in which baked earth is found by measuring the changes of terrestrial magnetism through the thermal remanent magnetization retained in baked earth. This study aims to constrain the age of fire at Buinsa, Daege, Korea using 27 samples that were collected from a layer of baked earth. Buinsa is famous for the place where kept the first edition of Tripitaka Koreana, which was lost in fire at the second invasion of mongolia. In addition, there is a record that there was revolt around this region in A.D.1203. According to archaeomagnetic dating, ages of A.D.1150~1200 and A.D.1130~1210 were assigned for the two building sites in Buinsa, respectively. To this end, it can be concluded that the layer of baked earth on the two building sites in Buinsa recorded the vestige of fire caused by revolt.

Retrieval of Sulfur Dioxide Column Density from TROPOMI Using the Principle Component Analysis Method (주성분분석방법을 이용한 TROPOMI로부터 이산화황 칼럼농도 산출 연구)

  • Yang, Jiwon;Choi, Wonei;Park, Junsung;Kim, Daewon;Kang, Hyeongwoo;Lee, Hanlim
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1173-1185
    • /
    • 2019
  • We, for the first time, retrieved sulfur dioxide (SO2) vertical column density (VCD) in industrial and volcanic areas from TROPOspheric Monitoring Instrument (TROPOMI) using the Principle component analysis(PCA) algorithm. Furthermore, SO2 VCDs retrieved by the PCA algorithm from TROPOMI raw data were compared with those retrieved by the Differential Optical Absorption Spectroscopy (DOAS) algorithm (TROPOMI Level 2 SO2 product). In East Asia, where large amounts of SO2 are released to the surface due to anthropogenic source such as fossil fuels, the mean value of SO2 VCD retrieved by the PCA (DOAS) algorithm was shown to be 0.05 DU (-0.02 DU). The correlation between SO2 VCD retrieved by the PCA algorithm and those retrieved by the DOAS algorithm were shown to be low (slope = 0.64; correlation coefficient (R) = 0.51) for cloudy condition. However, with cloud fraction of less than 0.5, the slope and correlation coefficient between the two outputs were increased to 0.68 and 0.61, respectively. It means that the SO2 retrieval sensitivity to surface is reduced when the cloud fraction is high in both algorithms. Furthermore, the correlation between volcanic SO2 VCD retrieved by the PCA algorithm and those retrieved by the DOAS algorithm is shown to be high (R = 0.90) for cloudy condition. This good agreement between both data sets for volcanic SO2 is thought to be due to the higher accuracy of the satellite-based SO2 VCD retrieval for SO2 which is mainly distributed in the upper troposphere or lower stratosphere in volcanic region.