• 제목/요약/키워드: toxic responses

검색결과 167건 처리시간 0.021초

Excess zinc uptake in Paronychiurus kimi(Collembola) induces toxic effects at the individual and population levels

  • Son, Jino;Lee, Yun-Sik;Kim, Yongeun;Wee, June;Ko, Euna;Cho, Kijong
    • 환경생물
    • /
    • 제37권3호
    • /
    • pp.335-342
    • /
    • 2019
  • The purpose of this study was to investigate the toxic effects of zinc in collembolan Paronychiurus kimi at the individual (survival and juvenile production) and population (population growth and age structure) levels after 28 days of exposure in artificially spiked soil. These toxic effects were interpreted in conjunction with the internal zinc concentrations in P. kimi. The EC50 value for juvenile production based on the total zinc concentration was 457 mg Zn kg-1 dry soil, while the LC50 value for adult survival and ri=0 value for population growth were within the same order of magnitude (2,623 and 1,637 mg Zn kg-1 dry soil, respectively). Significant differences in adult survival, juvenile production, and population growth compared with the control group were found at concentrations of 1,500, 375, and 375 mg Zn kg-1 dry or higher, respectively, whereas significant differences in the age structure, determined by the proportion of each age group in the population, were observed in all treatment groups. It appeared that the internal zinc level in P. kimi was regulated to some extent at soil zinc concentrations of ≤375 mg Zn kg-1 dry soil, but not at high soil zinc concentrations. These results indicate that, despite zinc being regulated by P. kimi, excess zinc exceeding the regulatory capacity of P. kimi can trigger changes in the responses at the individual and population levels. Given that population dynamics are affected not only by individual level but also by population level endpoints, it is concluded that the toxic effects of pollutants should be assessed at various levels.

Reduction of Dioxin-Induced Expression of cyplal Gene through Repression of AhR/Arnt DNA Binding by Mek-1 inhibitor PD98059

  • Park, Hyunsung
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2002년도 Molecular and Cellular Response to Toxic Substances
    • /
    • pp.60-66
    • /
    • 2002
  • Aryl hydrocarbons, environmental contaminants accumulate in tissue and pose potential risk in human health. 2,3,7,8-Tertachlorodibenzo-p-dioxin (TCDD) is known as a most potent toxicant among aryl hydrocarbons. TCDD elicits numerous toxic responses in experimental animals and human, including hepatic carcinoma, pulmonary and skin tumor in adult rodents, craniofacial abnormality during mouse embryogenesis, chloracne, reproductive abnormality, immunotoxicity, endocrine effects in exposed humans.(omitted)

  • PDF

Application of Calux Bioassay for Determining Dioxin Toxicity Equivalents

  • Joung, Ki-Eun;An, Jin-Young;Sheen, Yhun-Yhong
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2003년도 추계학술대회
    • /
    • pp.172-173
    • /
    • 2003
  • There are growing concerns about human health effects of dioxin and dioxin like compounds such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and polychlorinated biphenyls (PCBs). Earlier studies recognized that 2.3.7.8-tetrachloro dibenzo-p-dioxin (TCDD) and structually related dioxin like compounds invoke a number of common toxic responses that are mediated through a high-affinity cytosolic receptor protein, the AhR.(omitted)

  • PDF

Chaotic phenomena in the organic solar cell under the impact of small particles

  • Jing, Pan;Zhe, Jia;Guanghua, Zhang
    • Steel and Composite Structures
    • /
    • 제46권1호
    • /
    • pp.15-31
    • /
    • 2023
  • Organic solar cells utilized natural polymers to convert solar energy to electricity. The demands for green energy production and less disposal of toxic materials make them one of the interesting candidates for replacing conventional solar cells. However, the different aspects of their properties including mechanical strength and stability are not well recognized. Therefore, in the present study, we aim to explore the chaotic responses of these organic solar cells. In doing so, a specific type of organic solar cell constructed from layers of material with different thicknesses is considered to obtain vibrational and chaotic responses under different boundaries and initial conditions. A square plate structure is examined with first-order shear deformation theory to acquire the displacement field in the laminated structure. The bounding between different layers is considered to be perfect with no sliding and separation. On the other hand, nonlocal elasticity theory is engaged in incorporating the structural effects of the organic material into calculations. Hamilton's principle is adopted to obtain governing equations with regard to boundary conditions and mechanical loadings. The extracted equations of motion were solved using the perturbation method and differential quadrature approach. The results demonstrated the significant effect of relative glass layer thickness on the chaotic behavior of the structure with higher relative thickness leading to less chaotic responses. Moreover, a comprehensive parameter study is presented to examine the effects of nonlocality and relative thicknesses on the natural frequency of square organic solar cell structure.

γ-Aminobutyric acid (GABA) confers chromium stress tolerance in mustard (Brassica juncea L.) seedlings by modulating the antioxidant defense and glyoxalase systems

  • Al Mahmud, Jubayer;Hasanuzzaman, Mirza;Nahar, Kamrun;Rahman, Anisur;Hossain, Md. Shahadat;Fujita, Masayuki
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.235-235
    • /
    • 2017
  • Chromium (Cr) toxicity is hazardous to the seed germination, growth, and development of plants. ${\gamma}$-Aminobutyric acid (GABA) is a non-protein amino acid and is involved in stress tolerance in plants. To investigate the effects of GABA in alleviating Cr toxicity, we treated eight-d-old mustard (Brassica juncea L.) seedlings with Cr (0.15 mM and 0.3 mM $K_2CrO_4$, 5 days) alone and in combination with GABA ($125{\mu}M$) in a semi-hydroponic medium. The roots and shoots of the seedlings accumulated Cr in a dose-dependent manner, which led to an increase in oxidative damage [lipid peroxidation; hydrogen peroxide ($H_2O_2$) content; superoxide ($O{_2}^{{\cdot}-}$) generation; lipoxygenase (LOX) activity], MG content, and disrupted antioxidant defense and glyoxalase systems. Chromium stress also reduced growth, leaf relative water content (RWC), and chlorophyll (chl) content but increased phytochelatin (PC) and proline (Pro) content. Furthermore, supplementing the Cr-treated seedlings with GABA reduced Cr uptake and upregulated the non-enzymatic antioxidants (ascorbate, AsA; glutathione, GSH) and the activities of the enzymatic antioxidants including ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione peroxidase (GPX), superoxide dismutase (SOD), catalase (CAT), glyoxalase I (Gly I), and glyoxalase II (Gly II), and finally reduced oxidative damage. Adding GABA also increased leaf RWC and chl content, decreased Pro and PC content, and restored plant growth. These findings shed light on the effect of GABA in improving the physiological mechanisms of mustard seedlings in response to Cr stress.

  • PDF

조피볼락(Sebastes schlegelii)의 혈액성상, 혈장성분 및 항산화 반응에 미치는 미세플라스틱의 독성 영향 (Toxic Effects of Microplastic on Hematological Parameters, Plasma Components, and Antioxidant Responses in the Korean Rockfish Sebastes schlegelii)

  • 강정훈;고지연;유영빈;최재호;이주형;강주찬
    • 한국수산과학회지
    • /
    • 제57권3호
    • /
    • pp.227-238
    • /
    • 2024
  • This study aimed to evaluate the effects of polyethylene microplastic (PE-MPs) via measuring the growth performance, hematological parameters, and antioxidant responses in Korean rockfish Sebastes schlegelii exposed to waterborne polyethylene microplastic with dimensions of 22-71 ㎛. S. schlegelii (mean weight, 34.55±5.82 g; mean length, 12.59±0.79 cm) were exposed to PE-MPs at concentrations of 0, 400, 800, 1,600 and 3,200 ㎍/L for 10 and 20 days. PE-MPs significantly affected growth performance, hematological parameters, plasma components, and antioxidant responses in a concentration-dependent manner. At a concentration ≥1,600 ㎍/L, PE-MPs significantly decreased body weight gain and specific growth rate, and significantly increased the hepatosomatic index. Hematological parameters showed a significant decrease in total red blood cell count and hemoglobin levels. Plasma components showed a significant increase in glucose, aspartate aminotransferase, and alanine transaminase levels, whereas total protein, calcium, and magnesium levels significantly decreased. Exposure to ≥1,600 ㎍/L PE-MPs also induced reactive oxygen species generation in the gill and liver, significantly increasing superoxide dismutase and catalase activity. These findings suggest that exposure to ≥1,600 ㎍/L PE-MPs could significantly change growth performance, hematological parameters, plasma components, and antioxidant responses, resulting in physiological toxicity.

Differential Responses of Two Freshwater Cyanobacteria, Anabaena variabillis and Nostoc commune, to Sulfonylurea Herbicide Bensulfuron-methyl

  • KIM JEONG-DONG;LEE CHOUL-GYUN
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권1호
    • /
    • pp.52-56
    • /
    • 2006
  • The effect of bensulfuron-methyl on the nontargeted cyanobacteria was greater on A. variabillis than N. commune. Both A. variabillis and N. commune were initially able to utilize low concentrations of the herbicide, bensulfuron-methyl, whereas higher concentrations of bensulfuron-methyl or the hydrolyzed products of the herbicide were found to be toxic. Growth and photosynthesis inhibitions of over $50\%$ were observed, when 8 to 10 ppm of the herbicide was applied. Nitrogenase activities of the cyanobacteria were decreased by $94-98\%$ in A. variabillis and by $85-86\%$ in N. commune after 24 h of incubation with 10 ppm and 20 ppm of bensulfuron-methyl. Nitrogenase activities were also inhibited by the addition of ammonium salts as low as 0.05 mM. Furthermore, the toxic effect of the herbicide was the highest at pH 4-6, showing approximately $42-60\%$ toxicity, whereas much lower toxicity $(9-28\%)$ was observed at higher pH of 7-10, due to base-catalyzed hydrolysis of bensulfuron-methyl.

Acaricidal Components of Medicinal Plant Oils Against Dermatophagoides farinae and Dermatophagoides pteronyssinus

  • Cho, Jang-Hee;Sung, Bo-Kyung;Lim, Mi-Youn;Kim, Hyeon-Jin;Lee, Sang-Guei;Lee, Hoi-Seon
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권3호
    • /
    • pp.631-634
    • /
    • 2004
  • The oils of Acorus gramineus, Cinnamomum sieboldii, Eugenia aromatica, and Inula helenium were tested for their acaricidal activity against Dermatophagoides farinae and D. pteronyssinus. Responses varied according to dose and mite species. As compared to the oils, the oil most toxic to D. farinae and D. pteronyssinus was E. aromatica, followed by C. sieboldii, A. gramineus, and I. helenium. On the basis of $LD_{50}$ values of the oils in A. gramineus, C. sieboldii, and E. aromatica, the compound most toxic against D. farinae and D. pteronyssinus was eugenol congeners (isoeugenol>eugenol>acetyleugenol) followed by benzyl benzoate, salicylaldehyde, safro1, DEET, cinnamyl alcohol, and 3-carene. As a naturally occurring acaricide, these oils and eugenol congeners could be useful as new acaricidal agents against Dermatophagoides spp.

Cadmium but not Mercury Suppresses NF-$\kappa$B Activation and COX-2 Expression Induced by Toll-like Receptor 2 and 4 Agonists

  • Ahn, Sang-Il;Park, Seul-Ki;Lee, Mi-Young;Youn, Hyung-Sun
    • Molecular & Cellular Toxicology
    • /
    • 제5권2호
    • /
    • pp.141-146
    • /
    • 2009
  • Toll-like receptors (TLRs) induce innate immune responses by recognizing conserved microbial structural molecules. All TLR signaling pathways culminate in the activation of nuclear factor kappa-B (NF-$\kappa$B) leading to the induction of inflammatory gene products such as cyclooxygenase-2 (COX-2). Deregulated activation of TLRs can lead to the development of severe systemic inflammation. Divalent heavy metals, cadmium and mercury, have been used for thousands of years. While cadmium and mercury are clearly toxic to most mammalian organ systems, especially the immune system, their underlying toxic mechanism(s) remain unclear. Here, we report biochemical evidence that cadmium, but not mercury, inhibits NF-$\kappa$B activation and COX-2 expression induced by TLR2 or TLR4 agonists, while cadmium does not inhibit NF-$\kappa$B activation induced by the downstream signaling component of TLRs, MyD88. Thus, the target of cadmium to inhibit NF-$\kappa$B activation may be upstream of MyD88 including TLRs themselves, or events leading to TLR activation by agonists.

Antimite Activity of Cumin Volatiles Against Dermatophagoides farinae and Dermatophagoides pteronyssinus (Acari: Pyroglyphidae)

  • Lee, Hoi-Seon
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권4호
    • /
    • pp.805-809
    • /
    • 2004
  • The antimite activities of cumin seed oil-derived cuminaldehyde and eleven commercial components of Cuminum cyminum oil were examined against Dermatophagoides farinae and Dermatophagoides pteronyssinus adults and compared with those of benzyl benzoate and N,N-diethyl-m-toluamide. Responses varied according to dose and mite species. On the basis of $LD_{50}$ values, the compound most toxic to D. farinae adults was cuminaldehyde ($2.40\mug/cm^2$) followed by benzyl benzoate ($9.32\mug/cm^2$), thymol ($9.43\mug/cm^2$), DEET ($36.84\mug/cm^2$), and 3-carene ($42.11\mug/cm^2$). Against D. pteronyssinus adults, cuminaldehyde ($1.94\mug/cm^2$) was much more effective than benzyl benzoate ($6.50\mug/cm^2$) thymol ($6.92\mug/cm^2$), DEET ($17.79\mug/cm^2$), and 3-carene ($39.85\mug/cm^2$). These results indicate that the antimite activity of cumin seed oil could be caused by cuminaldehyde. Cuminaldehyde was about 3.9 and 3.4 times more toxic than benzyl benzoate against D. farinae and D. pteronyssinus adults, respectively. Therefore, further study is needed to confirm the findings of this study and the possibility of cuminaldehyde as a house dust mite control agent or a lead compound.