• Title/Summary/Keyword: toxic effects

Search Result 1,774, Processing Time 0.027 seconds

The Effects of Volatile Organic Compounds on Apoptosis of Human Neutrophils and Eosinophils

  • Yang, Eun-Ju;Kim, In-Sik
    • Biomedical Science Letters
    • /
    • v.16 no.2
    • /
    • pp.123-126
    • /
    • 2010
  • Volatile organic compounds are commonly off gassed from various building materials and can induce sick building syndrome. Volatile organic compounds such as formaldehyde, xylene and toluene are known as toxic agents in immune cells. Human leukocytes, particularly, neutrophils and eosinophils play important roles in the regulation of immune responses. In this study, we investigated the toxic effects of formaldehyde, ortho-xylene (o-xylene), para-xylene (p-xylene) and toluene on the apoptosis of neutrophils and eosinophils isolated from the blood of healthy donors. Formaldehyde increased the constitutive apoptosis of neutrophils and eosinophils. o-xylene, p-xylene and toluene increased the spontaneous apoptosis of eosinophils, but not that of neutrophils. Formaldehyde increased the protein level of IL-8 in neutrophils and eosinophils, and suppressed the MCP-1 expression in neutrophils. The release of IL-6 from neutrophils was diminished by volatile organic compounds used in this study. In conclusion, formaldehyde, xylene and toluene elevate the apoptosis of neutrophils and eosinophils, and regulate the release of cytokine and chemokine in neutrophils and eosinophils. These results indicate that formaldehyde, xylene and toluene have a cytotoxicity in human neutrophils and eosinophils and may damage the modulation of immune responses.

Protective Effect of Albizzia julibrissin Leaf Extract on the Cytotoxicity Induced by Cupric Acetate Metallic Mordant (금속매염제인 초산구리의 세포독성에 대한 자귀나무잎 추출물의 보호 효과)

  • Chung, Jung-Hwa;Rim, Yo-Sup;Seo, Young-Mi
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.5
    • /
    • pp.520-528
    • /
    • 2019
  • Objectives: This study assessed the cytotoxicity of the metallic mordant cupric acetate (CA) and the protective effect of Albizzia julibrissin (AJ) leaf extract on CA-induced cytotoxicity in NIH3T3 fibroblasts. Methods: For this study, cell viability and antioxidative effects such as the inhibitory activity of lipid peroxidation (LP) and superoxide anion-radical (SAR) scavenging activity were assessed. Results: CA significantly decreased cell viability in a dose-dependent manner, and the $XTT_{50}$ value was measured as $55.0{\mu}M$ of CA. The cytotoxicity of CA was determined as highly toxic by Borenfreund and Puerner's toxic criteria. The catalase antioxidant significantly increased cell viability diminished by CA-induced cytotoxicity in these cultures. Regarding the protective effect of AJ leaf extract on CA-induced cytotoxicity, AJ leaf extract remarkably increased the SAR scavenging ability and the inhibitory ability of LP. From these findings, it is suggested that oxidative stress is involved in the cytotoxicity of CA, and AJ leaf extract effectively protected CA-induced cytotoxicity via antioxidative effects. Conclusions: Natural resources like AJ leaf extract may be a putative therapeutic agent for treatment or alleviation of the toxicity induced by CA metallic mordant.

Larvicidal potency of selected xerophytic plant extracts on Culex pipiens (Diptera: Culicidae)

  • ABUTAHA, Nael;AL-MEKHLAFI, Fahd A.;AL-KERIDIS, Lamya Ahmed;FAROOQ, Muhammad;NASR, Fahd A.;AL-WADAAN, Muhammad
    • Entomological Research
    • /
    • v.48 no.5
    • /
    • pp.362-371
    • /
    • 2018
  • Chemical insecticides released into the environment may have adverse biological effects. Therefore, there is a need for ecofriendly insecticides for mosquito control. Xerophytic plant extracts that may provide more ecofriendly active component were evaluated against Culex pipiens 4th instars. Plant extracts prepared using different solvents with a Soxhlet apparatus and different concentrations were tested against Culex pipiens larvae. The effects were observed at 24 h and 72 h intervals and $LD_{50}$ and $LD_{90}$ values determined. Chloroform ($CHCl_3$) and ethyl acetate (EtOAc) extracts of Althaea ludwigii were the most effective against Cx. pipiens $4^{th}$ instars, but were highly dependent on extract concentrations and exposure time. Results suggest that A. ludwigii extracts contain bioactive compounds, such as phenols and saponins, that may provide effective Cx. pipienslarval control. However, the extract was found to be toxic to zebrafish larvae, and may be toxic to other aquatic fauna. Further studies to determine the active components and toxicity to other fauna are needed.

Sorption of Pb and Cu on different types of microplastics

  • Ruri, Lee;Eun Hea, Jho;Jinsung, An
    • Membrane and Water Treatment
    • /
    • v.14 no.1
    • /
    • pp.19-25
    • /
    • 2023
  • The studies on the effect of different plastic properties (e.g., types, shapes, presence of additivies) on the sorption of contaminants in the agricultural environment are limited. In this study, Cu and Pb, the commonly found heavy metals in the environment, were used to investigate the sorption capacities of microplastics (MPs). The Pb sorption capacity increased in the order of polystyrene (PS)<polyethylene (PE)<polyvinyl chloride (PVC). The estimated Cu sorption capacity was greater for the PE films than the PE fragments, while the sorption strength was greater for the PE fragments. This suggests that the shapes of MPs can affect the contaminant sorption capacities. With the PE fragments, the Pb sorption capacity was greater than the Cu sorption capacity by 10-12 times. Also, the Pb and Cu sorption capacities were greater for the PE fragments with additives than the PE fragment without additives. After the sorption of Pb or Cu on MPs, the toxic effects of the Pb or Cu solutions were decreased, suggesting that the toxic effects of contaminants can be affected by the co-presence of MPs in the environment. Overall, the results show that different types and shapes of MPs and the presence of additives can affect the heavy metal sorption capacities of MPs.

Investigation of trace elements in incisor and molar teeth from two different geographical areas in Sudan using micro-particle induced x-ray emission (µ-PIXE)

  • M.E.M. Eisa;J.A. Mars;S. Naidoo;R.A. Shibrain;K.J. Cloete;M. Maaza
    • Analytical Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.99-104
    • /
    • 2023
  • Trace elements (TEs) have significant effects on both dental health and human health. Toxic effects are caused by deficiency or excess of TEs. This study was performed to determine levels of toxic and trace elements in incisor and molar teeth sampled from male and female participants residing in the north and south regions of Sudan. The tooth enamel of 18 extracted human teeth was analyzed using particle-induced x-ray emission (µ-PIXE) to determine its elemental profile and distribution. GeoPIXEII software package was used for the analysis of µ-PIXE data. The main elements determined were Na, Mg, P, S, Cl, K, Ca, Mn, Fe, Zn, Co, and Sr which were homogeneously distributed in the areas of the tooth enamel mapped with micro-PIXE.

Evacuation Safety Evaluation of High School according to Hydrogen Fluoride Leakage

  • Boohyun Baek;Sanghun Han;Hasung Kong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.255-266
    • /
    • 2024
  • The purpose is to evaluate evacuation safety by simulating the toxic effects of hydrogen fluoride leaks in areas surrounding national industrial complexes and to suggest alternatives for areas that do not satisfy evacuation safety. For human casualties caused by hydrogen fluoride leakage accidents, Available Safe Egress Time (ASET) is calculated by the toxic effects quantified with the Areal Locations of Hazardous Atmospheres (ALOHA), an off-site consequence assessment program. The Required Safe Egress Time (RSET) is calculated through Pathfinder, an evacuation simulation program. Evacuation safety is assessed by comparing ASET and RSET. The ALOHA program was used to evaluate the time to reach AEGL-2 concentration in 12 scenarios. The Pathfinder program was used to assess the total evacuation time of the high school among specific fire-fighting objects. Of the 12 accident scenarios, ASET was larger than RSET in the worst-case scenarios 1 and 9. For the remaining 10 accident scenarios, the ASET is smaller than the RSET, so we found that evacuation safety is not guaranteed, and countermeasures are required. Since evacuation safety is not satisfactory, we proposed to set up an evacuation area equipped with positive pressure equipment and air respirators inside specific fire-fighting objects such as the high school.

Decision support systems for the management of hazardous materials in aquatic ecosystems

  • Cho, Hee-Sun;Park, Young-Seuk
    • Journal of Ecology and Environment
    • /
    • v.35 no.4
    • /
    • pp.251-258
    • /
    • 2012
  • Many aquatic ecosystems suffer from anthropogenic disturbances, including the introduction of damaging levels of toxic substances. The effects of disturbances include complex relations with various components involved in the systems, and can include physical, chemical, and hydrological disruption depending of the contaminant. Decision Support Systems (DSSs) are developed to help decision makers to deal with complex management crises, through the systematic structuring and evaluation of decisions, and through providing easy-to-use and integrated tools for information elaboration and display. We reviewed various DSSs developed for toxic substances in aquatic ecosystems, and suggested a conceptual framework which is best suited to the management of such issues within Korea. It may assist stakeholders with their decision making process, and in the achievement of a consensus on water management solutions.

Increased Gene Expression in Cultured BEAS-2B Cells Treated with Metal Oxide Nanoparticles

  • Park, Eun-Jung;Park, Kwang-Sik
    • Toxicological Research
    • /
    • v.25 no.4
    • /
    • pp.195-201
    • /
    • 2009
  • Recent publications showed that metal nanoparticles which are made from $TiO_2,\;CeO_2,\;Al_2O_3,\;CuCl_2,\;AgNO_3$ and $ZnO_2$ induced oxidative stress and pro-inflammatory effects in cultured cells and the responses seemed to be common toxic pathway of metal nanoparticles to the ultimate toxicity in animals as well as cellular level. In this study, we compared the gene expression induced by two different types of metal oxide nanoparticles, titanium dioxide nanoparticles (TNP) and cerium dioxide nanoparticles (CNP) using microarray analysis. About 50 genes including interleukin 6, interleukin 1, platelet-derived growth factor $\beta$, and leukemia inhibitory factor were induced in cultured BEAS2B cells treated with TNP 40 ppm. When we compared the induction levels of genes in TNP-treated cells to those in CNP-treated cells, the induction levels were very correlated in various gene categories (r=0.645). This may suggest a possible common toxic mechanism of metal oxide nanoparticles.

Detection of Toxic Heavy Metal, Co(II) Trace via Voltammetry with Semiconductor Microelectrodes

  • Ly, Suw Young;Lee, Chang Hyun;Koo, Jae Mo
    • Toxicological Research
    • /
    • v.33 no.2
    • /
    • pp.135-140
    • /
    • 2017
  • The cobalt (Co(II)) ion is a main component of alloys and considered to be carcinogenic, especially due to the carcinogenic and toxicological effects in the aquatic environment. The toxic trace of the Co(II) detection was conducted using the infrared photodiode electrode (IPDE) using a working electrode, via the cyclic and square-wave anodic stripping voltammetry. The results indicated a sensitive oxidation peak current of Co(II) on the IPDE. Under the optimal conditions, the common-type glassy carbon, the metal platinum, the carbon paste, and the carbon fiber microelectrode were compared with the IPDE in the electrolyte using the standard Co(II). The IPDE was found to be far superior to the others.

Effects of Sopunghwalhyul-tang Water Extract against Xanthine Oxidase / Hypoxanthine(XO/HX)-Induced Neurotoxicity in the Cultured Mouse Spinal Sensory Neurons (소풍활혈탕 열탕액이 XO/HX에 의해 손상된 배양 척수감각신경세포에 미치는 영향)

  • 양경석;신선호
    • The Journal of Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.29-39
    • /
    • 2000
  • In order to elucidate the toxic mechanism of oxygen radicals in cultured mouse spinal sensory neurons, cytotoxic effect of oxygen radicals was evaluated by M1T assay and NR assay. In addition, protective effect of Sopunghwalhyultang(SPHHT) water extract on oxidant-induced neurotoxicity was investigated on these cultures. Spinal sensory neurons derived from mice were cultured in mediums containing various concentrations of Xanthine Oxidase / Hypoxanthine(XO/HX). Cell viability was measured by MTT assay and NR assay. XO/HX-mediated oxygen radicals remarkably decreased cell viability of cultured spinal sensory neurons in a dose-and time-dependent manner. And also, SPHHT blocked XO/HX-induced neurotoxicity in these cultures. These results suggest that oxygen radicals are toxic and SPHHT are effective in blocking against the oxidant-induced neurotoxicity in cultures of spinal sensory neurons of mice.

  • PDF