• 제목/요약/키워드: toughening agent

검색결과 15건 처리시간 0.025초

Novel thermoplastic toughening agents in epoxy matrix for vacuum infusion process manufactured composites

  • Bae, Jin-Seok;Bae, Jihye;Woo, Heeju;Lee, Bumjae;Jeong, Euigyung
    • Carbon letters
    • /
    • 제25권
    • /
    • pp.43-49
    • /
    • 2018
  • This study suggests the novel thermoplastic toughening agent, which can be applied in the monomer forms without increasing the viscosity of the epoxy resin and polymerized during the resin curing. The diazide (p-BAB) and dialkyne (SPB) compounds are synthesized and mixed with the epoxy resin and the carbon fiber reinforced epoxy composites are prepared using vacuum infusion process (VIP). Then, flexural and drop weight tests are performed to evaluate the improvement in the toughness of the prepared composites to investigate the potential of the novel toughening agent. When 10 phr of p-BAB and SPB is added, the flexural properties are improved, maintaining the modulus as well as the toughness is improved. Even with a small amount of polytriazolesulfone polymerized, due to the filtering effect of the solid SPB by the layered carbon fabrics during the VIP, the toughening and strengthening effect were observed from the novel toughening agent, which could be added in monomer forms, p-BAB and SPB. This suggests that the novel toughening agent has a potential to be used for the composites prepared from viscosity sensitive process, such as resin transfer molding and VIP.

DGEBA에 대한 폴리트리아졸술폰의 강인화 효과 연구 (Effect of Polytriazolesulfone Addition on Fracture Toughness of DGEBA Epoxy Resin)

  • 권웅;이민규;한민우;정의경
    • 한국염색가공학회지
    • /
    • 제31권2호
    • /
    • pp.118-126
    • /
    • 2019
  • This study aims to investigate the effect of polytriazolesulfone(PTS) addition on fracture toughness of diglycidyl ether of bisphenol A(DGEBA) and 4,4'-diaminodiphenylsulfone(DDS). Various amounts of PTS were added to DGEBA/4,4'-DDS in diazide and dialkyne monomer forms and polymerized during the epoxy curing process. Fracture toughness(K1C), tensile properties and thermal stability of the PTS added epoxy resin were evaluated and compared with those of PES, the conventional high Tg toughening agent, added epoxy resin. Fracture toughness of the PTS added epoxy resin was dramatically improved up to 133%, as the amount of PTS added increased, whereas that of the PES added epoxy resin was improved by only 67%. The tensile strength of PTS added DGEBA/4,4'-DDS was similar to the epoxy resin without PTS and tensile modulus was improved by 20%. And thermal stability of the PTS added epoxy resin was improved up to 14%. Therefore, PTS addition to DGEBA/4,4'-DDS, as a toughening agent, is very effective way to improve its fracture toughness without any lowering in other properties.

음향방출을 통한 $Carbon/BMI({\pm}45^{\circ})_{2s}$의 전단 거동 (Shear Behavior of $Carbon/BMI({\pm}45^{\circ})_{2s}$By Acoustic Emission)

  • 이택수;이종문;이재락
    • 한국재료학회지
    • /
    • 제4권8호
    • /
    • pp.888-894
    • /
    • 1994
  • bismaleimide취약성을 개선 하기 위하여 toughening agent인 TM120을 첨가하여 carbon/$(\pm 45^\circ)_{2s}$를 제조하고 이들의 파손과 기계적 특성을 인당실험과 음향방출을 통해 자세히 논하였다. 첨가하는 TM120의 비율은 0, 5, 10, 15, 20, 25phr이었고, 1, 4-diazobicyclo-(2, 2, 2)-octane(DABCO) 0.2phr를 경화 촉진제로 사용하였다. 또한, 탄소 섬유는 Toray사의 T300를 사용하였고, 음향방출과 인장실험 결과로 TM120이 적당한 첨가량은 20phr이었으며, TM120은 cabon/$(\pm 45^\circ)_{2s}$의 파손특성과 기계적물성에 많은 영향을 미쳤다.

  • PDF

에폭시 강인성 향상 첨가제의 적용 및 물성 분석 (The Physical Properties Analysis of Epoxy Resins Incorporated with Toughening Agents)

  • 김대연;김순천;박영일;김영철;임충선
    • 접착 및 계면
    • /
    • 제16권3호
    • /
    • pp.101-107
    • /
    • 2015
  • 코어/쉘 나노입자, CTBN 변성에폭시, 폴리에스터 폴리올, 폴리우레탄 등과 같은 다양한 종류의 강인화 소재는 에폭시 수지의 주요 단점으로 알려진 취성을 보완하여 낮은 충격 저항성을 개선시키기 위한 방법으로 연구되고 있다. 본 연구에서는 앞서 언급된 강인화 소재를 선정, 접착제 조성물에 첨가하여 기계적 물성을 조사하였다. 강인화 소재 도입에 따른 기계적 강도의 측정은 UTM을 이용한 굴곡 강도와 탄성률 측정 및 Izod 충격 시험기를 사용한 충격 강도 실험을 통해 이루어 졌으며, 그 결과 강인화 소재가 에폭시 경화물의 유연성 및 충격에 대한 저항성 향상에 미치는 긍정적인 효과가 나타남을 관찰하였다. 또한, DMA를 이용한 저장 탄성률 결과는 굴곡 탄성률의 결과와 동일한 경향으로 나타남을 확인하였다. 강인화 소재가 충격 강도 향상에 영향을 주는 이유는 에폭시 수지에 첨가된 강인화 소재의 상 분리 현상에 의한 것이며, 상 분리된 강인화 소재는 에폭시 조성물의 파단면을 관찰한 FE-SEM 이미지에서 관찰하였다.

침전법으로 제조한 $Al_2O_3$-$ZrO_2$계 세라믹스의 미세구조 및 기계적 특성 (Microstructures and Mechanical Properties of $Al_2O_3$-$ZrO_2$ Ceramics Prepared by a Precipitation Method)

  • 홍기곤;이홍림
    • 한국세라믹학회지
    • /
    • 제27권8호
    • /
    • pp.991-1003
    • /
    • 1990
  • A precipitation method, one of the most effective liquid phase reaction methods, was adopted in order to prepare high-tech Al2O3/ZrO2 composite ceramics. Al2(SO4)3.18H2O, ZrOCl2.8H2O and YCl3.6H2O were used as starting materials and NH4OH as a precipitation agent, various types of metal hydroxides were obtained by single precipitation(series A) and co-precipitation(series B) method at the pH condition between 7 and 11. Fine Al2O3-ZrO2 powders were prepared at optimum calcination condition and the effects of ZrO2 on microstructures and mechanical properties of Al2O3 were investigated. The composition of Al2O3/ZrO2 composites wax fixed as Al2O3-15 v/o ZrO2(+3m/o Y2O3). ZrO2 limited the grain growth of Al2O3 and increased grain size homogeneity of Al2O3 more effectively than MgO.Flexural strength values in Al2O3 and Al2O3/ZrO2 composites were 340-430 MPa and 540-820 MPa, respectively, and the effect of strength improvement showed 20-50% by adding ZrO2 to Al2O3. Fracture toughness of Al2O3/ZrO2 composites was improved by stress-induced phase transformation of tetragonal ZrO2 and toughening effect by microcrack was not observed. Also, ZrO2 particles located at Al2O3 grain junction contributed to toughening, while spherical ZrO2 particles located within Al2O3 grain did not contribute to toughening. Weibull moduli of Al2O3 ceramics and Al2O3/ZrO2 composites of series A and series B were 4.34, 5.17 and 9.06, respectively. Above 0.5 of failure probability, strength values in Al2O3 ceramics and Al2O3/ZrO3 composites of series A and series B were above 400 MPa, 700 MPa and 650 MPa, respectively.

  • PDF

Coupling Agent를 이용한 Polyamide 6와 Polyester Elastomer의 반응동반 블랜드 (Melt viscosity and Morphology of Reactive Blends)

  • Byung Kyu Kim;Sang Hyun Baek;Lee Keun Yoon
    • 유변학
    • /
    • 제11권1호
    • /
    • pp.50-56
    • /
    • 1999
  • DGEBA(diglycidil ether of bisphenol A) 및 PBO(2-1,4 phenylene bis(2-oxazoline))를 coupling agent(CA)로, polyamide 6(PA 6)와 polyester elastomer(PEL)의 용융블렌드를 동방향 이축압출기에서 제조하였다. coupling agent, 특히 DGEBA의 첨가와 더불어 PA 6/PEL 블렌드는 물론 PA 6의 낫치 충격강도가 증가하였으며, 블렌드의 최대 충격강인화는 0.6% DGEBA 즉, 입자크기가 최소인 조성에서 나타났다. 미처리 저주파수 영역에서 블렌드의 용융점도는 기초수지 이상으로 증가하였다. 블렌드 뿐만 아니라 기초수지의 용융점도는 CA의 첨가와 더불어 증가하였으며, 그 효과는 DGEBA, PA 6 및 PA 6-rich 조성에서 더욱 뚜렷하였다.

  • PDF

변성 폴리에테르이미드의 합성과 이를 이용한 에폭시 수지의 강인화 (Synthesis of Modified Polyetherimide and Toughening of Epoxy Resin)

  • 이신득;안병현;이광기;김원호
    • 폴리머
    • /
    • 제29권3호
    • /
    • pp.231-236
    • /
    • 2005
  • 사슬 말단에 아민기를 갖는 폴리에테르이미드(AT-PEI)를 2,2'-bis[4-(3,4-dicarboxyphenoxy)-phenyl]propane dianhydride (BPADA)와 m-phenylenediamine의 반응에 의해 합성하였으며, BPADA와 m-phenylenediamine 및 3,5-diaminobenzoic acid의 반응에 의해 pendant 카복시기를 갖는 폴리에테르이미드(CP-PEI)를 합성하였다. 합성된 변성 PEI 들을 bisphenol-A의 diglycidyl ether에 첨가한 후 nadic methyl anhydride(NMA)로 경화시켜 에폭시 수지를 제조하고 열적 특성, 강인성 및 내용매성을 측정하였다. AT-PEI가 20 phr 첨가된 에폭시 수지는 내열의 저하 없이 파괴인성($K_{IC}$)가 2.88 $MPa{\cdot}m^{0.5}$로서 높은 강인성을 보였다. CP-PEI가 20phr 첨가된 에폭시 수지의 $K_{IC}$는 2.82$MPa{\cdot}m^{0.5}$이었다.

Epoxidized soybean oil(ESO)의 합성 및 4 관능성 에폭시 수지/ESO 블렌드 시스템의 물성 (Synthesis of Epoxidized Soybean Oil (ESO) and its Blends with Tetrafunctional Epoxy Resins)

  • Lee, Jae-Rock;Jin, Fan-Long;Park, Soo-Jin
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 춘계학술발표대회 논문집
    • /
    • pp.180-183
    • /
    • 2003
  • In this work. a potential inexpensive epoxy resin. epoxidized soybean oil (ESO) was synthesized and applied as a toughening agent for 4.4'-tetradiglycidyl diaminodiphenyl methane (TGDDM). The chemical structure of ESO was characterized by FT-IR, $^1H NMR, and ^{13}C NMR$ spectroscopy. The curing behaviors. thermal stabilities. fracture toughness. and flexural strength of TGDDM/ESO blend systems were investigated by using the dynamic DSC. thermogravimetric analysis (TGA). and flexural tests. The thermal stabilities of TGDDM/ESO blend systems were decreased with increasing ESO contents. whereas the critical stress intensity factor ($K_{IC}$) and flexural strength ($\sigma_f$) were increased with ESO contents up to 10 wt% ESO.

  • PDF

Synthesis and Characterization of New Nickel Sulfide Precursor

  • Lee, Sang Chan;Park, Bo Keun;Chung, Taek-Mo;Hong, Chang Seop;Kim, Chang Gyoun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.365.2-365.2
    • /
    • 2014
  • Nickel sulfide (NiS) has been utilized in optoelectronic applications, such as transformation-toughening agent for materials used in semiconductor applications, catalysts, and cathodic materials in rechargeable lithium batteries. Recently, high quality nickel sulfide thin films have been explored using ALD/CVD technique. Suitable precursors are needed to deposit thin films of inorganic materials. However, nickel sulfide precursors available for ALD/CVD process are very limited to nickel complexes with dithiocarbamate and alkanethiolate ligands. Therefore, it is essential to prepare novel nickel sulfide suitable for ALD/CVD precesses. Herein we report on the synthesis and characterization of new nickel sulfide complex with designed aminothiolate ligand. Furthermore thin films of NiS have been prepared on silicon oxide substrates by spin coating nickel precursor 10 wt% in THF. The novel complex has been characterized by means of 1H-NMR, elemental analysis, thermogravimetric analysis (TGA), X-ray Diffraction (XRD) and scanning electron microscope (SEM).

  • PDF

음향공진법을 이용한 PVC/MBS의 탄성적 특성 평가 (An Evaluation of Elastic Aspects of PVC/MBS by An Acoustic Resonance Method)

  • 이동환;박세만;박명균
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.603-608
    • /
    • 2001
  • A certain amount of MBS rubber was added to improve toughness of PVC which has a strong tendency of being brittle, producing a mixture, PVC/MBS, from which test specimens were prepared. PVC has strong chemical resistance, oil resistance, frame retardancy and high mechanical strength. Also, it is relatively inexpensive to produce, but shows weakness to impact and difficult for processing. MBS, a typical toughening agent for PVC is generally known, when added in a small amount, to improve impact resistance and to minimize difficulties during the processing of the PVC without adversely affecting the positive aspects of the PVC. In this investigation, attempts were made to observe and determine the variations in elastic and damping constants of the PVC depending on the amounts of MBS added to the mixture, PVC/MBS, and also on the thicknesses of the specimens. An acoustic resonance technique was used for the tests in this investigation. It serves as a method to characterize properties of materials set in vibrational motions, which is initiated by low level stresses generated by externally supplied acoustic energy. Substantial variations were observed in the test results with the addition of the MBS to the PVC. Generally, the magnitudes of elastic constants decrease while the damping capacity improves when MBS rubber was added.

  • PDF