• Title/Summary/Keyword: toughening agent

Search Result 14, Processing Time 0.028 seconds

Novel thermoplastic toughening agents in epoxy matrix for vacuum infusion process manufactured composites

  • Bae, Jin-Seok;Bae, Jihye;Woo, Heeju;Lee, Bumjae;Jeong, Euigyung
    • Carbon letters
    • /
    • v.25
    • /
    • pp.43-49
    • /
    • 2018
  • This study suggests the novel thermoplastic toughening agent, which can be applied in the monomer forms without increasing the viscosity of the epoxy resin and polymerized during the resin curing. The diazide (p-BAB) and dialkyne (SPB) compounds are synthesized and mixed with the epoxy resin and the carbon fiber reinforced epoxy composites are prepared using vacuum infusion process (VIP). Then, flexural and drop weight tests are performed to evaluate the improvement in the toughness of the prepared composites to investigate the potential of the novel toughening agent. When 10 phr of p-BAB and SPB is added, the flexural properties are improved, maintaining the modulus as well as the toughness is improved. Even with a small amount of polytriazolesulfone polymerized, due to the filtering effect of the solid SPB by the layered carbon fabrics during the VIP, the toughening and strengthening effect were observed from the novel toughening agent, which could be added in monomer forms, p-BAB and SPB. This suggests that the novel toughening agent has a potential to be used for the composites prepared from viscosity sensitive process, such as resin transfer molding and VIP.

Effect of Polytriazolesulfone Addition on Fracture Toughness of DGEBA Epoxy Resin (DGEBA에 대한 폴리트리아졸술폰의 강인화 효과 연구)

  • Kwon, Woong;Lee, Minkyu;Han, Minwoo;Jeong, Euigyung
    • Textile Coloration and Finishing
    • /
    • v.31 no.2
    • /
    • pp.118-126
    • /
    • 2019
  • This study aims to investigate the effect of polytriazolesulfone(PTS) addition on fracture toughness of diglycidyl ether of bisphenol A(DGEBA) and 4,4'-diaminodiphenylsulfone(DDS). Various amounts of PTS were added to DGEBA/4,4'-DDS in diazide and dialkyne monomer forms and polymerized during the epoxy curing process. Fracture toughness(K1C), tensile properties and thermal stability of the PTS added epoxy resin were evaluated and compared with those of PES, the conventional high Tg toughening agent, added epoxy resin. Fracture toughness of the PTS added epoxy resin was dramatically improved up to 133%, as the amount of PTS added increased, whereas that of the PES added epoxy resin was improved by only 67%. The tensile strength of PTS added DGEBA/4,4'-DDS was similar to the epoxy resin without PTS and tensile modulus was improved by 20%. And thermal stability of the PTS added epoxy resin was improved up to 14%. Therefore, PTS addition to DGEBA/4,4'-DDS, as a toughening agent, is very effective way to improve its fracture toughness without any lowering in other properties.

Shear Behavior of $Carbon/BMI({\pm}45^{\circ})_{2s}$By Acoustic Emission (음향방출을 통한 $Carbon/BMI({\pm}45^{\circ})_{2s}$의 전단 거동)

  • Lee, Taek-Su;Lee, Jong-Mun;Lee, Jae-Rak
    • Korean Journal of Materials Research
    • /
    • v.4 no.8
    • /
    • pp.888-894
    • /
    • 1994
  • In detail of fracture and mechanical properties to carbon/BMI$(\pm 45^\circ)_{2s}$ discusses by acoustic emission and tensile testing. The bismaleimide resin from Boots Technochemie Co. was toughened by TM 120 from same Co. The weight proportions of TM 120 were fixed as 0, 5, 10, 15, 20, 25phr. The 0.2phr of 1, 4-diazobicyclo-(2, 2, 2)-octane(DABC0) was used as the accelerator. The used carbon fiber was T300 from Toray Co. The optimum additional proportion of TM120 was proved as 20phr by mechanical testing and at the same time by the results of acoustic emission. toughening agent gives significant influences on the fracture phenomena and mechanical strength.

  • PDF

The Physical Properties Analysis of Epoxy Resins Incorporated with Toughening Agents (에폭시 강인성 향상 첨가제의 적용 및 물성 분석)

  • Kim, Daeyeon;Kim, Soonchoen;Park, Young-IL;Kim, Young Chul;Lim, Choong-Sun
    • Journal of Adhesion and Interface
    • /
    • v.16 no.3
    • /
    • pp.101-107
    • /
    • 2015
  • Epoxy resin toughening agents such as core/shell nanoparticles, CTBN epoxy, polyester polyols, and polyurethane have been widely used in order to compensate for the brittleness and improve the impact resistance of the epoxy resin. In this work, a few tougheners mentioned above were individually added into adhesive compositions to observe the effects of physical and mechanical properties. Both flexural strength and flexural modulus were measured with UTM while impact strength was analyzed with Izod impact tester. The obtained results showed that the addition of toughening agents afforded positive performance in terms of flexibility and impact resistance of the cured epoxy resin. Furthermore, DMA experiments suggested that the trends of storage modulus data of each epoxy resin composition coincided with the trends of flexural modulus data. FE-SEM images showed that toughening agents formed circled-shape particles when it was cured in epoxy resin composition at high temperature by phase separation. The existence of particles in the cured samples explains why epoxy resin with toughener has higher impact resistance.

Microstructures and Mechanical Properties of $Al_2O_3$-$ZrO_2$ Ceramics Prepared by a Precipitation Method (침전법으로 제조한 $Al_2O_3$-$ZrO_2$계 세라믹스의 미세구조 및 기계적 특성)

  • 홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.8
    • /
    • pp.991-1003
    • /
    • 1990
  • A precipitation method, one of the most effective liquid phase reaction methods, was adopted in order to prepare high-tech Al2O3/ZrO2 composite ceramics. Al2(SO4)3.18H2O, ZrOCl2.8H2O and YCl3.6H2O were used as starting materials and NH4OH as a precipitation agent, various types of metal hydroxides were obtained by single precipitation(series A) and co-precipitation(series B) method at the pH condition between 7 and 11. Fine Al2O3-ZrO2 powders were prepared at optimum calcination condition and the effects of ZrO2 on microstructures and mechanical properties of Al2O3 were investigated. The composition of Al2O3/ZrO2 composites wax fixed as Al2O3-15 v/o ZrO2(+3m/o Y2O3). ZrO2 limited the grain growth of Al2O3 and increased grain size homogeneity of Al2O3 more effectively than MgO.Flexural strength values in Al2O3 and Al2O3/ZrO2 composites were 340-430 MPa and 540-820 MPa, respectively, and the effect of strength improvement showed 20-50% by adding ZrO2 to Al2O3. Fracture toughness of Al2O3/ZrO2 composites was improved by stress-induced phase transformation of tetragonal ZrO2 and toughening effect by microcrack was not observed. Also, ZrO2 particles located at Al2O3 grain junction contributed to toughening, while spherical ZrO2 particles located within Al2O3 grain did not contribute to toughening. Weibull moduli of Al2O3 ceramics and Al2O3/ZrO2 composites of series A and series B were 4.34, 5.17 and 9.06, respectively. Above 0.5 of failure probability, strength values in Al2O3 ceramics and Al2O3/ZrO3 composites of series A and series B were above 400 MPa, 700 MPa and 650 MPa, respectively.

  • PDF

Melt viscosity and Morphology of Reactive Blends (Coupling Agent를 이용한 Polyamide 6와 Polyester Elastomer의 반응동반 블랜드)

  • Byung Kyu Kim;Sang Hyun Baek;Lee Keun Yoon
    • The Korean Journal of Rheology
    • /
    • v.11 no.1
    • /
    • pp.50-56
    • /
    • 1999
  • Melt blends of polyamide 6 (PA 6) with polyester elastomer (PEL) were prepared in a corotating twin screw extruder using two types of coupling agent(CA), viz. diglycidyl ether of bisphenol A (DGEBA) and 1,4-phenylene bis(2-oxazoline) (PBO). Notched impact strength of PA 6 as well as PA 6/PEL blends increased with the addition of coupling agent, especially with DGEBA and the maximum impact toughening of the blend was obtained with 0.6%(by mol) DGEBA, where a minimum domain size was observed from SEM. Melt viscosities of the untreated blends were higher than those of base resins at low frequencies. Viscosities of base resins as well as blends increased with the addition of CA, and the effect was much more pronounced with DGEBA, especially for PA 6 and PA 6-rich blends.

  • PDF

Synthesis of Modified Polyetherimide and Toughening of Epoxy Resin (변성 폴리에테르이미드의 합성과 이를 이용한 에폭시 수지의 강인화)

  • Lee Sin Duk;Ahn Byung Hyun;Lee Kwang Gi;Kim Won Ho
    • Polymer(Korea)
    • /
    • v.29 no.3
    • /
    • pp.231-236
    • /
    • 2005
  • Amino terminated polyetherimide (AP-PEI) has been synthesized using 2,2'-bis [4-(3,4-dicarboxyphenoxy)-phenyl]propane dianhydride (BPADA) and m-phenylenediamine. Polyetherimide containing pendant carboxy group (CP-PEI) has also been synthesized by the reaction of BPADA, m-phenylenediamine and 3,5-diaminobenzoic acid. The modified PEIs were used as toughening agent for diglycidyl ether of bisphenol-A epoxy resin which was cured with nadic methyl anhydride (NMA). Thermal properties, fracture toughness ($K_{IC}$) and solvent resistance of toughened epoxy resin were measured. The $K_{IC}$ of epoxy resin containing 20 phr of AT-PEI was 2.88$MPa{\cdot}m^{0.5}$ without sacrificing thermal properties. The $K_{IC}$ of epoxy resin which contained 20 phr of CP-PEI was 2.82$MPa{\cdot}m^{0.5}$.

Synthesis of Epoxidized Soybean Oil (ESO) and its Blends with Tetrafunctional Epoxy Resins (Epoxidized soybean oil(ESO)의 합성 및 4 관능성 에폭시 수지/ESO 블렌드 시스템의 물성)

  • Lee, Jae-Rock;Jin, Fan-Long;Park, Soo-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.180-183
    • /
    • 2003
  • In this work. a potential inexpensive epoxy resin. epoxidized soybean oil (ESO) was synthesized and applied as a toughening agent for 4.4'-tetradiglycidyl diaminodiphenyl methane (TGDDM). The chemical structure of ESO was characterized by FT-IR, $^1H NMR, and ^{13}C NMR$ spectroscopy. The curing behaviors. thermal stabilities. fracture toughness. and flexural strength of TGDDM/ESO blend systems were investigated by using the dynamic DSC. thermogravimetric analysis (TGA). and flexural tests. The thermal stabilities of TGDDM/ESO blend systems were decreased with increasing ESO contents. whereas the critical stress intensity factor ($K_{IC}$) and flexural strength ($\sigma_f$) were increased with ESO contents up to 10 wt% ESO.

  • PDF

Synthesis and Characterization of New Nickel Sulfide Precursor

  • Lee, Sang Chan;Park, Bo Keun;Chung, Taek-Mo;Hong, Chang Seop;Kim, Chang Gyoun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.365.2-365.2
    • /
    • 2014
  • Nickel sulfide (NiS) has been utilized in optoelectronic applications, such as transformation-toughening agent for materials used in semiconductor applications, catalysts, and cathodic materials in rechargeable lithium batteries. Recently, high quality nickel sulfide thin films have been explored using ALD/CVD technique. Suitable precursors are needed to deposit thin films of inorganic materials. However, nickel sulfide precursors available for ALD/CVD process are very limited to nickel complexes with dithiocarbamate and alkanethiolate ligands. Therefore, it is essential to prepare novel nickel sulfide suitable for ALD/CVD precesses. Herein we report on the synthesis and characterization of new nickel sulfide complex with designed aminothiolate ligand. Furthermore thin films of NiS have been prepared on silicon oxide substrates by spin coating nickel precursor 10 wt% in THF. The novel complex has been characterized by means of 1H-NMR, elemental analysis, thermogravimetric analysis (TGA), X-ray Diffraction (XRD) and scanning electron microscope (SEM).

  • PDF

An Evaluation of Elastic Aspects of PVC/MBS by An Acoustic Resonance Method (음향공진법을 이용한 PVC/MBS의 탄성적 특성 평가)

  • Lee, D.H.;Bahk, S.M.;Park, M.K.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.603-608
    • /
    • 2001
  • A certain amount of MBS rubber was added to improve toughness of PVC which has a strong tendency of being brittle, producing a mixture, PVC/MBS, from which test specimens were prepared. PVC has strong chemical resistance, oil resistance, frame retardancy and high mechanical strength. Also, it is relatively inexpensive to produce, but shows weakness to impact and difficult for processing. MBS, a typical toughening agent for PVC is generally known, when added in a small amount, to improve impact resistance and to minimize difficulties during the processing of the PVC without adversely affecting the positive aspects of the PVC. In this investigation, attempts were made to observe and determine the variations in elastic and damping constants of the PVC depending on the amounts of MBS added to the mixture, PVC/MBS, and also on the thicknesses of the specimens. An acoustic resonance technique was used for the tests in this investigation. It serves as a method to characterize properties of materials set in vibrational motions, which is initiated by low level stresses generated by externally supplied acoustic energy. Substantial variations were observed in the test results with the addition of the MBS to the PVC. Generally, the magnitudes of elastic constants decrease while the damping capacity improves when MBS rubber was added.

  • PDF