• 제목/요약/키워드: totally umbilic hypersurface

검색결과 6건 처리시간 0.019초

ON A TOTALLY UMBILIC HYPERSURFACE OF FIRST ORDER

  • Kim, Jaeman
    • 호남수학학술지
    • /
    • 제39권4호
    • /
    • pp.465-473
    • /
    • 2017
  • In this paper, we define a totally umbilic hypersurface of first order and show that a totally umbilic hypersurface of first order in an Einstein manifold has a parallel second fundamental form. Furthermore we prove that a complete, simply connected and totally umbilic hypersurface of first order in a space of constant curvature is a Riemannian product of Einstein manifolds. Finally we show a proper example which is a totally umbilic hypersurface of first order but not a totally umbilic hypersurface.

CONFORMAL VECTOR FIELDS AND TOTALLY UMBILIC HYPERSURFACES

  • Kim, Dong-Soo;Kim, Seon-Bu;Kim, Young-Ho;Park, Seong-Hee
    • 대한수학회보
    • /
    • 제39권4호
    • /
    • pp.671-680
    • /
    • 2002
  • In this article, we show that if a semi-Riemannian space form carries a conformal vector field V of which the tangential part $V^T$ on a connected hypersurface $M^N$ ecomes a conformal vector field and the normal part $V^N on $M^N$ does not vanish identically, then $M^N$ is totally umbilic. Furthermore, we give a complete description of conformal vector fields on semi-Riemannian space forms.

ON SOME L1-FINITE TYPE (HYPER)SURFACES IN ℝn+1

  • Kashani, Seyed Mohammad Bagher
    • 대한수학회보
    • /
    • 제46권1호
    • /
    • pp.35-43
    • /
    • 2009
  • We say that an isometric immersed hypersurface x : $M^n\;{\rightarrow}\;{\mathbb{R}}^{n+1}$ is of $L_k$-finite type ($L_k$-f.t.) if $x\;=\;{\sum}^p_{i=0}x_i$ for some positive integer p < $\infty$, $x_i$ : $M{\rightarrow}{\mathbb{R}}^{n+1}$ is smooth and $L_kx_i={\lambda}_ix_i$, ${\lambda}_i\;{\in}\;{\mathbb{R}}$, $0{\leq}i{\leq}p$, $L_kf=trP_k\;{\circ}\;{\nabla}^2f$ for $f\;{\in}\'C^{\infty}(M)$, where $P_k$ is the kth Newton transformation, ${\nabla}^2f$ is the Hessian of f, $L_kx\;=\;(L_kx^1,\;{\ldots},\;L_kx^{n+1})$, $x=(x^1,\;{\ldots},\;x^{n+1})$. In this article we study the following(hyper)surfaces in ${\mathbb{R}}^{n+1}$ from the view point of $L_1$-finiteness type: totally umbilic ones, generalized cylinders $S^m(r){\times}{\mathbb{R}}^{n-m}$, ruled surfaces in ${\mathbb{R}}^{n+1}$ and some revolution surfaces in ${\mathbb{R}}^3$.