• Title/Summary/Keyword: totally geodesic screen distribution

Search Result 12, Processing Time 0.024 seconds

HALF LIGHTLIKE SUBMANIFOLDS WITH TOTALLY UMBILICAL SCREEN DISTRIBUTIONS

  • Jin, Dae-Ho
    • The Pure and Applied Mathematics
    • /
    • v.17 no.1
    • /
    • pp.29-38
    • /
    • 2010
  • We study the geometry of half light like submanifold M of a semi-Riemannian space form $\bar{M}$(c) subject to the conditions : (a) the screen distribution on M is totally umbilic in M and the coscreen distribution on M is conformal Killing on $\bar{M}$ or (b) the screen distribution is totally geodesic in M and M is irrotational.

LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

  • Shin, Jong Moon
    • East Asian mathematical journal
    • /
    • v.31 no.1
    • /
    • pp.33-40
    • /
    • 2015
  • We study the geometry of r-lightlike submanifolds M of a semi-Riemannian manifold $\bar{M}$ with a semi-symmetric non-metric connection subject to the conditions; (a) the screen distribution of M is totally geodesic in M, and (b) at least one among the r-th lightlike second fundamental forms is parallel with respect to the induced connection of M. The main result is a classification theorem for irrotational r-lightlike submanifold of a semi-Riemannian manifold of index r admitting a semi-symmetric non-metric connection.

NON-TANGENTIAL HALF LIGHTLIKE SUBMANIFOLDS OF SEMI-RIEMANNIAN MANIFOLDS WITH SEMI-SYMMETRIC NON-METRIC CONNECTIONS

  • Jin, Dae Ho
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.311-323
    • /
    • 2014
  • In this paper, we construct two types of non-tangential half lightlike submanifolds of a semi-Riemannian manifold admitting a semi-symmetric non-metric connection. Our main result is to prove several characterization theorems for each types of such half lightlike submanifolds equipped with totally geodesic screen distributions.

LIGHTLIKE HYPERSURFACES OF A SEMI-RIEMANNIAN MANIFOLD OF QUASI-CONSTANT CURVATURE

  • Jin, Dae-Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.4
    • /
    • pp.763-770
    • /
    • 2012
  • In this paper, we study the geometry lightlike hypersurfaces (M, $g$, S(TM)) of a semi-Riemannian manifold ($\tilde{M}$, $\tilde{g}$) of quasi-constant curvature subject to the conditions: (1) The curvature vector field of $\tilde{M}$ is tangent to M, and (2) the screen distribution S(TM) is either totally geodesic in M or totally umbilical in $\tilde{M}$.

GEOMETRY OF HALF LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN SPACE FORM WITH A SEMI-SYMMETRIC METRIC CONNECTION

  • Jin, Dae Ho
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.769-781
    • /
    • 2011
  • We study the geometry of half lightlike sbmanifolds M of a semi-Riemannian space form $\tilde{M}(c)$ admitting a semi-symmetric metric connection subject to the conditions: (1) The screen distribution S(TM) is totally umbilical (geodesic) and (2) the co-screen distribution $S(TM^{\bot})$ of M is a conformal Killing one.

A NOTE ON LIGHTLIKE HYPERSURFACES OF A GRW SPACE-TIME

  • Kang, Tae Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.305-315
    • /
    • 2018
  • This note provides a study of lightlike hypersurfaces of a generalized Robertson-Walker(GRW) space-time with a certain screen distribution, which are integrable and have good properties. Focus is to investigate geometric features from the relation of the second fundamental forms between lightlike hypersurfaces and leaves of the integrable screen distribution. Also, we shall apply those results on lightlike hypersurfaces of a GRW space-time to lightlike hypersurfaces of a Robertson-Walker(RW) space-time.

ASCREEN LIGHTLIKE HYPERSURFACES OF A SEMI-RIEMANNIAN SPACE FORM WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

  • Jin, Dae Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.311-317
    • /
    • 2014
  • We study lightlike hypersurfaces of a semi-Riemannian space form $\tilde{M}(c)$ admitting a semi-symmetric non-metric connection. First, we construct a type of lightlike hypersurfaces according to the form of the structure vector field of $\tilde{M}(c)$, which is called a ascreen lightlike hypersurface. Next, we prove a characterization theorem for such an ascreen lightlike hypersurface endow with a totally geodesic screen distribution.

ON LIGHTLIKE HYPERSURFACES OF COSYMPLECTIC SPACE FORM

  • Ejaz Sabir Lone;Pankaj Pandey
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.223-234
    • /
    • 2023
  • The main purpose of this paper is to study the lightlike hypersurface (M, $\overline{g}$) of cosymplectic space form $\overline{M}$(c). In this paper, we computed the Gauss and Codazzi formulae of (M, $\overline{g}$) of cosymplectic manifold ($\overline{M}$, g). We showed that we can't obtain screen semi-invariant lightlike hypersurface (SCI-LH) of $\overline{M}$(c) with parallel second fundamental form h, parallel screen distribution and c ≠ 0. We showed that if second fundamental form h and local second fundamental form B are parallel, then (M, $\overline{g}$) is totally geodesic. Finally we showed that if (M, $\overline{g}$) is umbilical, then cosymplectic manifold ($\overline{M}$, g) is flat.

TWO CHARACTERIZATION THEOREMS FOR HALF LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KENMOTSU MANIFOLD

  • Jin, Dae Ho
    • The Pure and Applied Mathematics
    • /
    • v.21 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • In this paper, we study the curvature of locally symmetric or semi-symmetric half lightlike submanifolds M of an indefinite Kenmotsu manifold $\bar{M}$, whose structure vector field is tangent to M. After that, we study the existence of the totally geodesic screen distribution of half lightlike submanifolds of indefinite Kenmotsu manifolds with parallel co-screen distribution subject to the conditions: (1) M is locally symmetric, or (2) the lightlike transversal connection is flat.