• Title/Summary/Keyword: total volatile organic compound

Search Result 46, Processing Time 0.027 seconds

Stand Characteristics and NVOCs Emission Characteristics in Warm Temperate Evergreen Broadleaf Forests and Pinus thunbergii Forest (난대 상록활엽수림과 곰솔림 임분 특성 및 NVOCs 발산 특성)

  • Kim, Gwang-Il;Kim, Sang-Mi;Park, In-Teak;Lee, Kye-Han;Oh, Deuk-Sil
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.4
    • /
    • pp.402-412
    • /
    • 2022
  • This study investigated each forest's stand characteristics and the NVOCs emission characteristics for Quercus acuta, Castanopsis sieboldii, Dendropanax trifidus, Camellia Japonica which are major warm temperate evergreen broad-leaved species, and Pinus thunbergii. Data were collected from May 2019 to January 2020. The seasonal temperature and humidity of each research site indicated the typical climatic characteristics of Korea, which are hot and humid in summer and cold and dry in winter. Also, the atmospheric pressure was generally high in winter and higher in autumn and winter than in spring and summer. Overall, the total volume of NVOCs (Natural Volatile Organic Compounds) from the five research sites was the highest in the summer. The concentration of TNVOCs was relatively high in the Dendropanax trifidus forest in spring and winter, the Castanopsis sieboldii forest in the autumn, and the Quercus acuta forest in the summer. According to the results of this study, it was confirmed that the concentrations of NVOCs emission of warm temperate evergreen broad-leaved species such as Quercus acuta, Castanopsis sieboldii, Dendropanax trifidus and Camellia Japonica were not lower but rather higher than Pinus thunbergii. The correlation was positive (+) between NVOCs emission and temperature (r=0.590, P=0.000) or humidity (r=0.655, P=0.000), whereas it was negative (-) between NVOCs emission and atmospheric pressure (r=-0.384, P=0.000) or wind speed (r=-0.263, P=0.018). Among the micrometeological factors, humidity (β=0.507, P=0.000) was found to have the greatest effect on NVOC emission, followed by temperature, atmospheric pressure, and wind speed.

Physico-mechanical Properties and Formaldehyde/TVOC Emission of Particleboards with Volcanic Pozzolan

  • Kim, Sumin;An, Jae-Yoon;Kim, Jin-A;Kim, Hee-Soo;Kim, Hyun-Joong;Kim, Hak-Gyeom
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.39-50
    • /
    • 2007
  • The purpose of this study was to investigate the physico-mechanical properties and characteristics on reduction of formaldehyde and total volatile organic compound (TVOC) emission from particleboard (PB) with added volcanic pozzolan. Pozzolan was added as a scavenger at the level of 1, 3, 5, and 10 wt.% of urea formaldehyde (UF) resin for PB manufacture. The moisture content, density, thickness swelling, water absorption and physical properties of PBs were examined. Three-point bending strength and internal bond strength were determined using a universal testing machine. Formaldehyde and TVOC were determined by desiccator and 20L small chamber methods. With increasing pozzolan content the physical and mechanical properties of the PBs were not significantly changed, but formaldehyde and TVOC emissions were decreased. Because pozzolan has a rough and irregular surface with porous form, it can be used as a scavenger for PBs at a content up to 10 wt.% without any detrimental effect on the physical and mechanical properties.

Application of Field and Laboratory Emission Cell (FLEC) to Determine Formaldehyde and VOCs Emissions from Wood-Based Composites

  • Kim, Sumin;Kim, Jin-A;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.24-37
    • /
    • 2007
  • The Korean Ministry of Environment started controlling indoor air quality (IAQ) in 2004 through the introduction of a law regulating the use of pollutant emitting building materials. The use of materials with formaldehyde emission levels above $1.25 mg/m^2{\cdot}h$ (JIS A 1901, small chamber method) has been prohibited. This level is equivalent to the $E_2$ grade ($>5.0mg/{\ell}$) of the desiccator method (JIS A 1460). However, the $20{\ell}$ small chamber method requires a 7-day test time to obtain the formaldehyde and volatile organic compound (VOC) emission results from solid building interior materials. As a approach to significantly reduce the test time, the field and laboratory emission cell (FLEC) has been proposed in Europe with a total test time less than one hour. This paper assesses the reproducibility of testing formaldehyde and TVOC emissions from wood-based composites such as medium density fiberboard (MDF), laminate flooring, and engineered flooring using three methods: desiccator, perforator and FLEC. According to the desiccator and perforator standards, the formaldehyde emission level of each flooring was ${\le}E_1$ grade. The formaldehyde emission of MDF was $3.48 mg/{\ell}$ by the desiccator method and 8.57 g/100 g by the perforator method. To determine the formaldehyde emission, the peak areas of each wood-based composite were calculated from aldehyde chromatograms obtained using the FLEC method. Formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde and benzaldehyde were detected as aldehyde compounds. The experimental results indicated that MDF emitted chloroform, benzene, trichloroethylene, toluene, ethylbenzene, m,p-xy-lene, styrene, and o-xylene. MDF emitted significantly greater amounts of VOCs than the floorings did.

A Study on the Comparison of Atmospheric Concentrations of Volatile Organic Compounds in a Large Urban Area and a Sub-Urban Area (대도시 및 주변 교외지역의 대기 중 휘발성 유기화합물 농도 비교에 관한 연구)

  • Park, Ji-Hyae;Seo, Young-Kyo;Baek, Sung-Ok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.6
    • /
    • pp.767-778
    • /
    • 2006
  • This study was carried out to evaluate the temporal variations of VOCs at an urban site, and to compare the concentrations of VOCs at an urban site in Daegu with those at a suburban site in Gyeongsan. Three hourly VOC samples in the ambient air were collected using a sequential tube sampler (STS 25, Perkin Elmer) throughout two weeks during May and July representing spring and summer seasons, respectively. The VOC concentrations were determined by an automatic thermal desorption apparatus with GC/MS analysis. A total of 12 VOCs of environmental concern were determined, which are chloroform, benzene, trichloroethylene, toluene, tetra-chloroethylene, ethylbenzene, m+p-xylenes, o-xylene, styrene, 1,3,5- and 1,2,4-trimethylbenzenes. Among 12 target VOCs, the most abundant compound appeared to be toluene, being followed by xylenes. The mean concentrations at the urbn site were 1.2 pub for benzene and 20.4 ppb for toluene (n=221) while the mean levels at the suburban site were 0.9 ppb and 4.3 ppb for benzene and toluene (n=96), respectively. The urban site concentrations were typically several-fold higher than those measured at the suburban site. It was found that general trends of VOC levels were significantly dependent on traffic conditions at the sampling site since VOC concentrations were at their maximum during rush hours, i.e. $9{\sim}12a.m$ and $6{\sim}9p.m$. Statistical investigations were conducted to investigate any significant relationships between VOC concentrations and affecting factors. Calculated correlation coefficients among VOCs were positively significant at a level of 0.05 in most cases. Increased concentrations of toluene in the urban site were estimated to reflect the effect of large industrial sources, mainly from textile industry.

Effect of cell wall degrading enzyme and skin contact time on the brewing characteristics of Cheongsoo grape (청수 포도의 양조특성에 미치는 세포벽분해효소와 침용시간의 영향)

  • Jeon, Jin-A;Park, Seo-Jun;Yeo, Soo-Hwan;Choi, Ji-Ho;Choi, Han-Seok;Kang, Ji-Eun;Jeong, Seok-Tae
    • Food Science and Preservation
    • /
    • v.20 no.6
    • /
    • pp.846-853
    • /
    • 2013
  • We investigated the effect of the cell-wall-degrading enzyme and its skin contact time on the brewing characteristics of Cheongsoo grape. The easy of juice extraction was excellent at the cell-wall-degrading enzyme and skin contact treatments, and the aroma was best after five days of skin contact treatment. Furthermore, the juice yields of the Chengsoo grape were more dramatically increased by the cell-wall-degrading enzyme and skin contact treatments than by the control. The data on the pH, total acidity, and soluble solids did not significantly differ among the treatments, and the pH range from 3.1 to 3.4; the total acidity from 0.5% to 0.6% (as tartaric acid); and the soluble solids, from 6.7 to 7.1 $^{\circ}Brix$. The alcohol content of cell-wall-degrading enzyme treatment was highest with 13.3%. The total polyphenol was gradually increased with the longer skin contact time, and was highest after 10 days of skin contact treatment, at 306.4 mg/L. The main organic acids detected in the Cheongsoo wine were malic and tartaric acid, and citric, succinic and lactic acid were also detected. Our results show that the cell-wall-degrading enzyme and skin contact treatments were better in terms of the easy of juice extraction and significantly increased the juice yield and the volatile compound of the Cheongsoo wine.

Analysis of Terpenoids as Volatile Compound Released During the Drying Process of Cryptomeria japonica (삼나무 건조 중 발생하는 휘발성 유기화합물 Terpenoids의 분석)

  • Lee, Su-Yeon;Gwak, Ki-Seob;Kim, Seon-Hong;Lee, Jun-Jae;Yeo, Hwan-Myeong;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.242-250
    • /
    • 2010
  • The aim of this study was to investigate the terpenoids of Total Volatile Organic Compounds (VOCs) released during drying of Cryptomeria japonica using the thermal extractor (TE). Considering the drying process of C. japonica, temperatures of TE were set at $27^{\circ}C$, $60^{\circ}C$, $80^{\circ}C$, $100^{\circ}C$, and $120^{\circ}C$, respectively. As the result, the emission factors of VOCs and terpenoids were increased as temperature increased. The amount of terpenoids included in VOCs emission factors were 87.5%, 81.6%, 83.6%, 90.1%, and 97.3% depending on above temperatures, respectively. Especially at$100^{\circ}C$ and $120^{\circ}C$, the amount of terpenoids were measured more than 90%. ${\delta}$-cadinene was the highest yield at each temperature and 32 types of terpenoids were collected. Emitted terpenoids were classified into the sesquiterpene group which consists of 15 carbon sources. These 32 sesquiterpenes were used for determining the useful bioactivity such as antifungal activity by the agar dilution. As the result, they showed the antifungal activity against Trichophyton rubrum, Trichophyton mentagrophytes, Microsporum gypseum. The 5,000 ppm concentration of terpenoids showed a strong activity with 100% against the 3 fungi. At the 1,000 ppm concentration of terpenoids, the antifungal activities against three fungi were 95.2%, 98.7%, and 97.3%, and their activities were a little inhibited at 100 ppm concentration.