• Title/Summary/Keyword: total mean cost

Search Result 200, Processing Time 0.03 seconds

Optimal Burn-in Time under Cumulative Pro-Rata Replacement Warranty

  • Yun, Won-Young;Lee, Yang-Woo;Chung, Il-Han;Luis Ferreira
    • International Journal of Reliability and Applications
    • /
    • v.2 no.4
    • /
    • pp.241-251
    • /
    • 2001
  • In this paper, optimal bum-in time to minimize the total mean cost, which is the sum of manufacturing cost with burn-in and cumulative warranty-related cost, is obtained. When the products with cumulative pro-rata warranty have high failure rate in the early period (infant mortality period), a burn-in procedure is adopted to eliminate early product failures. After burn-in, the posterior product life distribution and the warranty-related cost are dependent on burn-in time; long burn-in period may reduce the warranty-related cost, but it increases the manufacturing cost. The paper provides a methodology to obtain total mean cost under burn-in and cumulative pro-rata warranty. Property of the optimal burn-in time is analyzed, and numerical examples and sensitivity analysis are studied.

  • PDF

A Maintenance Policy Determination of Dependent k-out-of-n:G System with Setup Cost (초기설치비를 고려한 의존적 k-out-of-n:G 시스템의 보전정책 결정)

  • 조성훈;안동규;성혁제;신현재
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.2
    • /
    • pp.155-162
    • /
    • 1999
  • reliability from components reliability. In this case, it assumes that components failure is mutually independent, but it may not true in real systems. In this study, the mean cost per unit time is computed as the ratio of mean life to the mean cost. The mean life is obtained by the reliability function under power rule model. The mean cost is obtained by the mathematical model based on the inspection interval. A heuristic method is proposed to determine the optimal number of redundant units and the optimal inspection interval to minimize the mean cost per unit time. The assumptions of this study are as following : First, in the load-sharing k-out-of-n:G system, total loads are applied to the system and shared by the operating components. Secondly, the number of failed components affects the failure rate of surviving components as a function of the total load applied. Finally, the relation between the load and the failure rate of surviving components is set by the power rule model. For the practical application of the above methods, numerical examples are presented.

  • PDF

A Comparison of EOQ and OMMIP in which Inventory Cost is due to Holding Cost as a Fraction of Unit Cost (재고유지 비율을 고려한 EOQ와 OMMIP 비교)

  • Oh, Sae-Kyung;Kim, Dong-Ki;Choi, Jin-Yeong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.2
    • /
    • pp.43-50
    • /
    • 2008
  • In this paper we suggest the methods that compute the total inventory cost based on EOQ and the total inventory cost based on OMMIP. The total inventory cost consists of purchasing cost, ordering cost, inventory holding cost, stockout cost and so on. This papers also proposes the method that decides optimum order quantity as the order amount to minimize the total inventory cost with comparison of EOQ total inventory cost and OMMIP total inventory cost according to inventory holding cost as a fraction of unit cost.

Economic Design of Tool Resetting Period in NC Machining (NC 선반가공에서 공구 조정주기의 경제적 설계)

  • 배문택;윤원영;목학수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.33-39
    • /
    • 1998
  • This paper is related to economic design of tool-resetting period in NC machining. In NC lathe machining, the mean and variance of components dimension fluctuate in slow time and we should reset tool program to compensate the variation from the fluctuation. In this paper. we propose the procedure determining the optimal resetting period based on the total expected operating cost which consists of resetting cost and the quality cost related to dimension variation. As a case study, using experimental data about dimension changes of a lathe machining, we obtain the regression equations of mean and variance of the dimension fluctuation, total expected operating cost, and optimal resetting period.

  • PDF

Determination of the Wear Limit to the Process Mean Shift Problem with Varying Product and Process Variance (생산량과 공정분산이 변하는 공정평균이동 문제의 마모한계 결정)

  • Lee, Do-Kyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.3
    • /
    • pp.95-100
    • /
    • 2020
  • Machines and facilities are physically or chemically degenerated by continuous usage. One of the results of this degeneration is the process mean shift. The representative type of the degeneration is wear of tool or machine. According to the increasing wear level, non-conforming products cost and quality loss cost are increasing simultaneously. Therefore a periodic preventive resetting the process is necessary. The total cost consists of three items: adjustment cost (or replacement cost), non-conforming cost due to product out of upper or lower limit specification, and quality loss cost due to difference from the process target value and the product characteristic value among the conforming products. In this case, the problem of determining the adjustment period or wear limit that minimizes the total cost is called the 'process mean shift' problem. It is assumed that both specifications are set and the wear level can be observed directly. In this study, we propose a new model integrating the quality loss cost, process variance, and production volume, which has been conducted in different fields in previous studies. In particular, for the change in production volume according to the increasing in wear level, we propose a generalized production quantity function g(w). This function can be applied to most processes and we fitted the g(w) to the model. The objective equation of this model is the total cost per unit wear, and the determining variables are the wear limit and initial process setting position that minimize the objective equation.

Determination of the Resetting Time to the Process Mean Shift based on the Cpm+ (Cpm+ 기준에서의 공정평균이동에 대한 재조정 기간 결정)

  • Lee, Do-Kyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.1
    • /
    • pp.110-117
    • /
    • 2018
  • Machines and facilities are physically or chemically degenerated by continuous usage. One of the results of this degeneration is the process mean shift. By the result of degeneration, non-conforming products and malfunction of machine occur. Therefore a periodic preventive resetting the process is necessary. This type of preventive action is called 'preventive maintenance policy.' Preventive maintenance presupposes that the preventive (resetting the process) cost is smaller than the cost of failure caused by the malfunction of machine. The process mean shift problem is a field of preventive maintenance. This field deals the interrelationship between the quality cost and the process resetting cost before machine breaks down. Quality cost is the sum of the non-conforming item cost and quality loss cost. Quality loss cost is due to the deviation between the quality characteristics from the target value. Under the process mean shift, the quality cost is increasing continuously whereas the process resetting cost is constant value. The objective function is total costs per unit wear, the decision variables are the wear limit (resetting period) and the initial process mean. Comparing the previous studies, we set the process variance as an increasing concave function and set the quality loss function as Cpm+ simultaneously. In the Cpm+, loss function has different cost coefficients according to the direction of the quality characteristics from target value. A numerical example is presented.

A Maintenance Model Applying Loss Function Based on the Cpm+ in the Process Mean Shift Problem in Which the Production Volume Decreases (생산량이 감소하는 공정평균이동 문제에서 Cpm+ 기준의 손실함수를 적용한 보전모형)

  • Lee, Do-Kyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.1
    • /
    • pp.45-50
    • /
    • 2021
  • Machines and facilities are physically or chemically degenerated by continuous usage. The representative type of the degeneration is the wearing of tools, which results in the process mean shift. According to the increasing wear level, non-conforming products cost and quality loss cost are increasing simultaneously. Therefore, a preventive maintenance is necessary at some point. The problem of determining the maintenance period (or wear limit) which minimizes the total cost is called the 'process mean shift problem'. The total cost includes three items: maintenance cost (or adjustment cost), non-conforming cost due to the non-conforming products, and quality loss cost due to the difference between the process target value and the product characteristic value among the conforming products. In this study, we set the production volume as a decreasing function rather than a constant. Also we treat the process variance as a function to the increasing wear rather than a constant. To the quality loss function, we adopted the Cpm+, which is the left and right asymmetric process capability index based on the process target value. These can more reflect the production site. In this study, we presented a more extensive maintenance model compared to previous studies, by integrating the items mentioned above. The objective equation of this model is the total cost per unit wear. The determining variables are the wear limit and the initial process setting position that minimize the objective equation.

Total Waste Water at Rice Washing for Rice Cooking, its Composition and Cost Analysis (취반시 쌀씻는 물의 양과 발생한 뜨물의 구성 및 처리비용분석)

  • Shin, Dong-Hwa
    • Journal of the Korean Society of Food Culture
    • /
    • v.12 no.4
    • /
    • pp.419-421
    • /
    • 1997
  • Washing water volume of rice for cooking and rice weight for one person per meal in one household were surveyed for confirming pollution by the washing water and total losses by rice washing procedures. The mean size of a family was 4.64 persons and the mean consumption weight of rice per capital per meal was 138.43g. It is used 0.782 L of water for washing the rice per capital share. The washing water of rice was composed of 0.32% of total solid, 0.11% of soluble solid and 1.65% of solid loss to rice, and COD and BOD of it were 2.400 and 3.564 ppm respectively. Based on total population in Korea, 41 miliion, excepting age below 4, total cost for washing water of rice summed up about 1,495 billion won including 8.8 billion won for tap water cost, 11.7 billion won for waste water treatment, and 129 billion for solid loss of rice.

  • PDF

The Analysis on Annual Utilization Patterns of Inpatients in Korean Medical Hospitals for the Past 10 years (10년간 일개 한의대 부속 한방병원에 입원한 환자에 대한 연도별 이용실태 분석 : 침구의학과를 중심으로)

  • Kim, Hye Su;Kim, So Yun;Kim, Jung Ho;Kim, Young Il
    • Journal of Acupuncture Research
    • /
    • v.33 no.2
    • /
    • pp.61-76
    • /
    • 2016
  • Objectives : This study was designed to clarify population-social characteristics that influence the utilization patterns of hospitalized patients in a traditional korean hospital, thereby providing clinical data which would help further improvements of traditional korean medical service in particular the Acupuncture and Moxibustion. Methods : We investigated population-social characteristics and annual utilization patterns of all patients who were hospitalized for more than 24 hours in a Korean Medical Hospital from January 2005 to December 2014. The obtained data were recorded in the EMR chart and statistical analysis was performed using SPSS 21.0. Additionally, data from the patients admitted to the department of Acupuncture and Moxibustion were analyzed separately. Results : 1. All inpatients had a significant annual difference in age, gender, hospitalized department, and disease code annually but not in re-hospitalization number. Inpatients of the department of Acupuncture and Moxibustion also varied in their age, gender, and disease code annually, but not in re-hospitalization number. 2. Pearson correlation analysis on all inpatients showed that the mean days of hospital treatments had a negative correlation with all variables except medical care insurance. Total cost, cost per day per person and recuperation cost had a positive correlation with all variables except medical care insurance. There was no meaningful relationship between nonrecuperation cost and the variables. 3. Stepwise multiple regression analysis on all inpatients showed that the mean days of hospital treatments had a negative correlation with all variables except automobile insurance. The total hospitalization costs had a positive correlation with both general insurance and medical care insurance. Cost per day per person and recuperation cost had a positive correlation with the females. There was no meaningful relationship between non-recuperation cost and the variables. 4. Pearson correlation analysis on inpatients of the department of Acupuncture and Moxibustion inpatients showed that the mean days of hospital treatments had a positive correlation with all variables except general insurance and automobile insurance. Total cost and recuperation cost had a positive correlation with all variables except medical care insurance, and cost per day per person had a positive correlation with females and general insurance. There was no meaningful relationship between non-recuperation cost and the variables. 5. Stepwise multiple regression analysis on inpatients of the department of Acupuncture and Moxibustion inpatients, the mean days of hospital treatments, total cost, cost per day per person and recuperation cost had a positive correlation with general insurance. There was no meaningful relationship between non-recuperation cost and the variables. Conclusion : Population-social characteristics of inpatients annually varies, and the change influences the utilization pattern.

An integrated one-vendor multi-buyer production-inventory model with shipment consolidation policy incorporated

  • Sung Chang Sup;Noh Kyung Wan;Lee Ik Sun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.1-7
    • /
    • 2003
  • This paper considers an Integrated one-vendor multi-buyer production-inventory model where the vendor manufactures multiple products In lot at Her associated finite production rates In the model. It is allowed for earth product to be shipped In lot to the buyers before the whole product production is not completed yet. Each product lot is dispatched to the associated buyer In a number or shipments. The buyers consume their products at fixed rates. The objective is to the production and shipment schedules in the Integrated system. which minimizes the mean total annual cost per unit time. The mean total annual cost consists or production setup cost inventory holding cost and shipment cost. For the model, an Iterative optimal solution procedure with shipment consolidation policy incorporated is derived. It is then tested through numerical experiments to show how efficient and effective He shipment consolidation policy is.

  • PDF