• Title/Summary/Keyword: total lightning detection system

Search Result 6, Processing Time 0.018 seconds

A study on the Site Survey and Detection Efficiency for Kepco Lightning Detection and Information Network (낙뢰측정 네트워크(KLDNet)를 위한 감지기 사이트서베이와 낙뢰 감지율 검토)

  • Woo, J.W.;Kwak, J.S.;Moon, J.D.
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.11
    • /
    • pp.532-537
    • /
    • 2006
  • Lightning induced faults accounts for more than 66% at the transmission lines of KEPCO. The lightning causes damages to power system equipments including transmission line, the blackout of electricity and the electro-magnetic interference. Because of this reason, we need the real time lightning information for the optimal operation of power system. And, it is required to obtain and accumulate the lightning current parameters for the insulation design. In 2005, KEPRI constructed a lightning detection network, the KLDNet (i.e. Kepco Lightning Detection & Information System) and launched a lightning information service for KEPCO customers. It is intended to provide data service on the operation of transmission lines and collect lightning-related data, which is the most important factor regulating power system design and operation. The new system will replace LPATS, the old detection system, which has been operating since 1995 and is rapidly failing in terms of both detection performance and location accuracy. The purpose of this paper is to explain the work performed and the results of that work in performing a site survey of several locations. The purpose of the site survey is to find locations acceptable for the installation of a lightning location receiver in support of a Lightning detection system(LDS). A restriction was placed on the surveyed locations, as they must belong to the Korea Electric Power Company. This requirement was made to facilitate the communication needs of the LDS network. Total of 15 sites were evaluated as possible LDS sensor sites. Some of the sites were rejected for physical reasons and therefore no electrical testing was performed. Of the 15 sites, total of 10 sites were considered acceptable and 5 sites were rejected for various reason. In this paper, we would like to explain the site survey and detection efficiency for LDS.

Statistical Characteristics of Recent Lightning Occurred over South Korea (최근 남한지역에서 발생한 낙뢰의 통계적 특성)

  • Eom, Hyo-Sik;Suh, Myoung-Seok
    • Journal of the Korean earth science society
    • /
    • v.30 no.2
    • /
    • pp.210-222
    • /
    • 2009
  • Lightning data, observed from total lightning detection system (TLDS) of KMA, for the recent five years (2002-2006) have been analyzed for temporal and spatial characteristics of frequency, intensity, duration, and flash rate. Lightning frequency varies largely with years (most frequent in 2006) and the lightning during the summer accounts for 75% of total flashes and only 0.6% of lightnings strike in cold season. In rainy season (JJAS), the ratio of positive flashes to negative ones is as low as 0.15, but it increases up to 0.98 in February. The seasonal variation of lightning duration is strongly linked with lightning occurrences, whereas flashes rates show weak seasonal variability. In a daily scale, lightning, on average, occurs more often at dawn (2 am, 5-7 am) and in the mid-afternoon (15 pm), and the lightning at dawn (around 5 am) is most intense during the day. The western inland areas md the West/South Sea show high lightning density during JJAS, whereas eastern part and the East Sea exhibit a low density of lightning. Considering the low ratio of positive flashes (0.15) for the whole analysis domain during summer period, Chungnam and Jeonbuk areas have a high ratio of flashes over 0.4. However, these should be analyzed with much caution because weak positive cloud-to-cloud discharges can be regarded as cloud-to-ground flashes. The western inland also exhibits long annual flash hours (15-24). And the W3st Sea has high flash rates as a result of large density and low flash hours. The most frequent time of lightning occurrence over most inland areas lies between mid-afternoon and early-evening, whereas mountainous and coastal areas, and the northern Kyoungki and Hwanghae provinces show the maximum lightning strikes in the morning and at dawn, respectively.

Characteristics by the Cloud-to-Ground Lightning Polarity Occurred over South Korea (남한 지역에서 발생한 구름-지면 낙뢰의 극성별 특성)

  • Myoung, Ji-Su;Suh, Myoung-Seok
    • Journal of the Korean earth science society
    • /
    • v.31 no.4
    • /
    • pp.335-347
    • /
    • 2010
  • The statistical characteristics of Cloud-to-Ground (CG) lightning data, observed by the total lightning detection system (TLDS) of KMA during the recent seven years (2002-2008), have been analyzed. Lightning frequency shows a strong interannual, seasonal and diurnal variations without regard to the polarity. The 74% and 0.6% of the total lightning occurred during the summer and winter, respectively. And it has a bimodal diurnal variation with two peaks (dawn: 0500-0700 LST, mid-afternoon: 1500-1600 LST). The ratio of positive flashes to negative ones also has a strong seasonal variation with the maximum and minimum during winter (62.5%) and summer (7.3%), respectively. Unlike the lightning frequency, the lightning intensity of negative flashes shows a weak interannual, seasonal and diurnal variations. However, the lightning intensity of positive flashes exhibits an inverse seasonal variation to that of lightning frequency, with the minimum and maximum during summer and winter, respectively. The lightning density is greatly higher in the western inland areas and the West/South Sea than in the eastern part and the East Sea. In general, the lightning intensity is stronger in the ocean, especially in the East Sea than in the inland area, regardless of the polarity.

New Diagnostic Technique and Device for Lightning Arresters by Analyzing the Wave Height Distribution of Leakage Currents (누설전류의 파고분포 분석에 의한 새로운 피뢰기 진단기술 및 장치)

  • 길경석;한주섭;송재영;조한구;한문섭
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.12
    • /
    • pp.562-567
    • /
    • 2003
  • Lightning arresters are deteriorated by repetition of protective operation against overvoltages or impulse currents in environments of its use. If a deteriorated arrester is left in power lines, it can lead to an accident such as a line to ground fault even in a normal system. Therefore, it is necessary to eliminate the deteriorated arrester in advance by checking the soundness of arresters on a regular basis, and to ensure the reliability of power systems by preventing accidents. Various deterioration diagnostic techniques and devices are suggested, and most of which measure leakage current components as an indicator of arrester ageing. However, the techniques based on the magnitude of leakage current measure simply RMS or peak value of leakage current components and do not provide detailed information needed in the diagnosis. In this study, we found that the wave height distributions of the total leakage currents are remarkably changed or a new wave height are produced with the progress of arrester deterioration. To propose a new technique for the diagnosis, we designed a leakage current detection unit and an analysis program which can measure leakage current magnitudes and analyze wave height distributions. From the experimental results, we confirmed that the proposed technique by analyzing the wave height distribution can simply diagnose the mode of defects such as a partial damage and an existence of punctures in arresters as well as deterioration of arresters.

Implementation of an Export System for GIS Arrester Facilities (GIS 피뢰설비 전문가 시스템 구현)

  • Kim, Il-Kwon;Song, Jae-Yong;Moon, Seung-Bo;Cha, Myung-Soo;Rhyu, Keel-Soo;Kil, Gyung-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1465-1466
    • /
    • 2006
  • The monitoring and diagnosing technique for lightning arresters is important to assure the reliability of power supply in GIS-substation. In this paper, we described the implementation of an expert system for GIS arrester facilities. The proposed system consists of a data acquisition module (DAM), a wireless communication module, and a personal computer. The DAM detects system voltages, total leakage currents and its harmonic components, and includes an algorithm to calculate the resistive leakage current by the principle that the magnitudes of resistive leakage current are equal at the same level of the system voltage applied to the arrestor. Also, we designed a surge event detection circuit which can acquire the date, the polarity, and the amplitude of surge events. All the acquired data are transmitted after correction by many algorithms to the remote station through the ZigBee protocol. The expert system is based on the Jave Expert System Shell (JESS) and make more reliable decision by using an exclusive inference process.

  • PDF

여름철 낙뢰 발생 시 강수 및 위성의 휘도온도 특성

  • Lee, Yun-Jeong;Seo, Myeong-Seok;O, Seok-Geun
    • 한국지구과학회:학술대회논문집
    • /
    • 2010.04a
    • /
    • pp.38-39
    • /
    • 2010
  • 낙뢰란 뇌운 속에서 분리 축적 된 음 (-)과 양 (+)의 전하 사이 또는 뇌운 속의 전하와 지면에 유도되는 전하 사이에서 발생하는 불꽃 방전을 말한다. 뇌운 안에는 이 불꽃 방전을 반복하기에 충분한 전하의 분리가 계속 일어나고 있는데, 그 결과 양전하 (+)는 구름의 상부에 넓게 분산되어 분포하고, 음전하 (-)는 주로 구름 하부에 분포한다. 이 때 음전하가 대지로 방전되어 발생하는 낙뢰를 부극성 (-)낙뢰, 양전하가 대지로 방전되어 발생하는 낙뢰를 정극성 (+)낙뢰라 한다. 낙뢰의 약 80%는 구름 내부 또는 구름 대 구름 사이에서 발생하고, 약 20%만이 구름과 지면 사이에서 발생하는데, 이러한 구름-지면 낙뢰 (Cloud-to-ground lightning)는 가장 위험하고 그 피해도 크다. 우리나라는 동아시아 몬순 기후의 영향으로 여름철에 대기가 불안정하여 낙뢰가 집중적으로 발생하며, 복잡한 지형과 해양의 영향으로 낙뢰현상의 공간적 변동도 크게 나타난다. 이러한 낙뢰는 최근으로 올수록 강도가 증가하고 있어 그 피해의 증가가 우려되기 때문에 낙뢰 발생 특성에 대한 연구가 필요하다. 본 연구에서는 낙뢰자료와 강수자료, 그리고 시 공간 분해능이 뛰어난 MTSAT-1R (Multi-functional Transport SATellite - 1 Replacement) 정지궤도 위성의 휘도온도를 이용하여 낙뢰 발생 시 강수 및 위성 휘도온도의 특성을 분석하고자 한다. 이러한 연구는 대류활동에 대한 정보 제공 뿐 아니라, 낙뢰 예측성 향상 및 재해 경감에도 활용될 수 있을 것이다. 본 연구에서는 2001년 기상청에 도입되어 운영 중인 신 낙뢰관측 시스템 (Total Lightning Detection System, TLDS)에서 관측된 낙뢰자료와 MTSAT-1R 위성에서 관측된 휘도온도 자료, 그리고 자동기상관측장비 (Automatic Weather System, AWS)에서 관측된 강수자료를 사용하였으며, 세 자료의 출처는 모두 기상청이다. 분석 기간은 2006년부터 2007년까지이며 우리나라에서 낙뢰발생 빈도가 여름철에 집중되어 나타나는 것을 고려하여 여름철 (6~8월) 낙뢰에 대해서만 분석하였다. 또한 낙뢰 발생 사례에 대하여 관측 효율이 90% 이상으로 알려진 위도 $33{\sim}39^{\circ}N$, 경도 $124{\sim}130^{\circ}E$ 영역에서 낙뢰발생시 강수 및 위성 휘도온도의 특성을 분석하였다. 사례는 낙뢰 발생 횟수가 많은 날을 중심으로 먼저 적외영상과 낙뢰영상을 정성적으로 분석한 후 뇌우의 지속시간이 긴 9개 사례를 선정하였다. MTSAT-1R 위성과 낙뢰자료 및 강수자료는 관측주기와 공간규모가 서로 다르기 때문에 세 자료를 함께 사용하기 위해서는 시 공간을 일치시키는 과정이 필요하다. 본 연구에서는 위성자료 관측시간(00분, 33분)과 AWS 지점 위 경도를 시 공간 일치를 위한 기준으로 사용하였다.

  • PDF