• Title/Summary/Keyword: total hydrodynamic pressure

Search Result 32, Processing Time 0.024 seconds

Finite element based total response analysis of rectangular liquid containers against different excitations

  • Kalyan Kumar Mandal
    • Ocean Systems Engineering
    • /
    • v.13 no.1
    • /
    • pp.57-77
    • /
    • 2023
  • In the present study, the total hydrodynamic pressure exerted by the fluid on walls of rectangular tanks due to horizontal excitations of different frequencies, is investigated by pressure based finite element method. Fluid within the tanks is invisid, compressible and its motion is considered to be irrotational and it is simulated by two dimensional eight-node isoparametric. The walls of the tanks are assumed to be rigid. The total hydrodynamic pressure increases with the increase of exciting frequency and has maximum value when the exciting frequency is equal to the fundamental frequency. However, the hydrodynamic pressure has decreasing trend for the frequency greater than the fundamental frequency. Hydrodynamic pressure at the free surface is independent to the height of fluid. However, the pressure at base and mid height of vertical wall depends on height of fluid. At these two locations, the hydrodynamic pressure decreases with the increase of fluid depth. The depth of undisturbed fluid near the base increases with the increase of depth of fluid when it is excited with fundamental frequency of fluid. The sloshing of fluid with in the tank increases with the increase of exciting frequency and has maximum value when the exciting frequency is equal to the fundamental frequency of liquid. However, this vertical displacement is quite less when the exciting frequency is greater than the fundamental frequency.

Operational Variables and Performance of Hydrodynamic Separator Treating Rainfall Runoff from Bridge (수리동력학적 분리장치에 의한 교량에서의 비점원 오염물질 처리시 운전변수와 분리효율에 관한 연구)

  • Kim, Yeonseok;Yu, Jianghua;Kim, Youngchul
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.3
    • /
    • pp.342-348
    • /
    • 2011
  • A hydrodynamic separator using natural free energy provided by bridge was operated for the treatment of stormwater runoff. The separator was automatically controlled by using electronic valve which is connected with pressure meter. Normally the separator was opened during dry days, but it was closed after the capture of first flush. The results indicated that the average pressure and the flow rate were directly affected by the rainfall intensity. The pressure was more than 3 meters as the rainfall intensity was above 5 mm/hr. The percent volume of underflow decreased as the pressure and flow rate increased, but the percent volume of overflow showed an opposite behavior. The concentration of total suspended solids (TSS) in underflow increased as a function of increasing pressure while it decreased in overflow. The TSS separation efficiency was evaluated based on mass balance. It ranged from 30% to 90% with the pressure ranging from 2 to 10 meters, and it was proportional to pressure and flow rate. The analysis of water balance indicated that around 13% of total runoff was captured by the separator as a first flush, and this runoff was separated as underflow and overflow with the respective percent volume of 29% and 71%. The pollutants budget was also examined based on mass balance. The results showed that the percent of TSS, $COD_{cr}$, TN and TP in underflow were 73%, 59%, 7.6% and 49%, respectively.

Radiation-hydrodynamic simulations of ram pressure strippin on star-forming galaxies

  • Lee, Jaehyun;Kimm, Taysun;Katz, Haley
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.54.1-54.1
    • /
    • 2018
  • Recent observational studies suggest that the environmental effects can shape the evolution of galaxies in clusters. In an attempt to better understand this process, we perform idealized radiation-hydrodynamic simulations of RAM pressure stripping on star-forming galaxies using RAMSES-RT. We find that extended HI disks are easily stripped by moderate ICM winds, while there is no significant decrease in the total mass of molecular gas. RAM pressure tends to compress the molecular gas, leading to enhanced star formation especially when the gaseous disk is hit by edge-on winds. On the other hand, strong ICM winds that are expected to operate at the centre of clusters strip both HI and molecular gas from the galaxy. Interestingly, we find that the strong ICM winds can induce the formation of relatively dense (~1H/cc) HI gas clouds at a distance from the disk.

  • PDF

Research of the impact of material and flow properties on fluid-structure interaction in cage systems

  • Mehmet Emin Ozdemir;Murat Yaylaci
    • Wind and Structures
    • /
    • v.36 no.1
    • /
    • pp.31-40
    • /
    • 2023
  • This paper investigates the mechanical behavior of full-scale offshore fish cages under hydrodynamic loads. To simulate different cases, different materials were used in the fish cage and analyzed under different flow velocities. The cage system is studied in two parts: net cage and floating collar. Analyses were performed with the ANSYS Workbench program, which allows the Finite Element Method (FEM) and Computational Fluid Dynamics (CFD) method to be used together. Firstly, the fish cage was designed, and adjusted for FSI: Fluid (Fluent) analysis. Secondly, mesh structures were created, and hydrodynamic loads acting on the cage elements were calculated. Finally, the hydrodynamic loads were transferred to the mechanical model and applied as a pressure on the geometry. In this study, the equivalent (von Mises) stress, equivalent strain, and total deformation values of cage elements under hydrodynamic loads were investigated. The data obtained from the analyses were presented as figures and tables. As a result, it has been shown that it is appropriate to use all the materials examined for the net cage and the floating collar.

Seismic analysis of Roller Compacted Concrete (RCC) dams considering effect of viscous boundary conditions

  • Karabulut, Muhammet;Kartal, Murat E.
    • Computers and Concrete
    • /
    • v.25 no.3
    • /
    • pp.255-266
    • /
    • 2020
  • This study presents comparation of fixed and viscos boundary condition effects on three-dimensional earthquake response and performance of a RCC dam considering linear and non-linear response. For this purpose, Cine RCC dam constructed in Aydın, Turkey, is selected in applications. The Drucker-Prager material model is considered for concrete and foundation rock in the nonlinear time-history analyses. Besides, hydrodynamic effect was considered in linear and non-linear dynamic analyses for both conditions. The hydrodynamic pressure of the reservoir water is modeled with the fluid finite elements based on the Lagrangian approach. The contact-target element pairs were used to model the dam-foundation-reservoir interaction system. The interface between dam and foundation is modeled with welded contact for both fixed and viscos boundary conditions. The displacements and principle stress components obtained from the linear and non-linear analyses are compared each other for empty and full reservoir cases. Seismic performance analyses considering demand-capacity ratio criteria were also performed for each case. According to numerical analyses, the total displacements and besides seismic performance of the dam increase by the effect of the viscous boundary conditions. Besides, hydrodynamic pressure obviously decreases the performance of the dam.

Nonlinear Fluid Forces on Hinged Wavemakers (힌지형 조파기에 작용하는 비선형 파력)

  • Kim, Tae-In;Rocbert T. Hudspeth
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.4
    • /
    • pp.208-222
    • /
    • 1990
  • The nonlinear hydrodynamic pressure force and moment on hinged wavemakers of variable-draft are presented. A closed-form solution (correct to second-order) for the nonlinear wavemaker boundary value problem has been obtained by employing the Stokes perturbation expansion scheme. The physical significance of the second-order contributions to the hydrodynamic pressure moment are examined in detail. Design curves are presented which demonstrate both the magnitude of the second-order nonlinearities and the effects of the variable-draft hinge height. The second-order contributions to the total hydrodynamic force and moment consist of a time-dependent and a steady part. The sum of the first and second-order pressure force and moment show a significant increase over those predicted by linear wavemaker theory. The second-order effects are shown to vary with both relative water depth and wave amplitude. The second-order dynamic effects are relatively more important for hinged wavemakers with shallower drafts.

  • PDF

Numerical Evaluation of Flow and Performance of Turbo-Pump Inducers (터보펌프 인듀서의 유동 및 성능의 수치적 평가)

  • Shim, Chang-Yeul;Kang, Shin-Hyoung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.243-249
    • /
    • 2001
  • Steady state flow calculations are executed for turbo-pump inducers of modem design to validate the performance of Tascflow code. Hydrodynamic performance is evaluated and structure of the passage flow and leading edge recirculation are also investigated. Calculated results show good coincidence with experimental data of static pressure performance and velocity profiles over the leading edge. Upstream recirculation, tip leakage and vortex flow at the blade tip and near leading edge are main source of pressure loss. Amount of pressure loss from the upstream to the leading edge corresponds to that of pressure loss through the whole blade. The total viscous loss is considerably large due to the strong secondary flow.

  • PDF

Numerical Evaluation of Flow and Performance of Turbo-Pump Inducers (터보펌프 인듀서의 유동 및 성능의 수치적 평가)

  • Shim, Chang-Yeul;Kang, Shin-Hyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.2 s.15
    • /
    • pp.22-28
    • /
    • 2002
  • Steady state flow calculations are conducted for the newly-designed turbo-pump inducers to validate the performance of Tascflow code. Hydrodynamic performance is evaluated, and structures of the passage flow and leading edge recirculation are also investigated. The calculated results show good coincidence with the experimental data of the static pressure performance and velocity profiles near the leading edge. Upstream recirculation, tip leakage and vortex flow at the blade tip and near leading edge are main sources of pressure losses. Amount of pressure losses from the upstream to the leading edge corresponds to that of pressure losses through the whole blade. The total viscous losses are considerably large due to the strong secondary flow.

Performance Analysis of a Hydrodynamic Separator for Treating Particulate Pollutants in Highway Rainfall Runoff

  • Yu, Jianghua;Yi, Qitao;Kim, Young-Chul
    • Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.262-269
    • /
    • 2009
  • This study examined the separation characteristics of particles in the rainfall runoff from paved roads using a ${\varphi}7.5$ cm hydrocyclone. The volume fraction and total suspended solids concentrations in the overflow and underflow from the hydrocyclone, as well as the separation efficiency were determined. The results indicated that the overflow volume increased with increasing operational pressure, but decreased with decreasing ratio of underflow outlet to inlet sizes ($D_u/D_i$), while the underflow to overflow volumes showed contrary behavior. The total suspended solid (TSS) concentration ratio between the overflow and inflow ($TSS_{over/in}$) decreased as a function of the operational pressure, while the corresponding ratio of underflow to inflow ($TSS_{under/in}$) increased. There was no visible difference in the $TSS_{over/in}$ with increasing $D_u/D_i$ ratio, but the $TSS_{under/in}$ decreased sharply. The particle removal efficiency was mainly affected by the particle size.

Multicenter clinical study on the hydrodynamic piezoelectric internal sinus elevation (HPISE) technique

  • Lee, Hyung-Ju;Moon, Jee-Won;Lee, Ju-Hyoung;Park, In-Sook;Kim, Nam-Ho;Sohn, Dong-Seok
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.38 no.2
    • /
    • pp.85-89
    • /
    • 2012
  • Objectives: This study was to evaluate the effect of vertical bone gain and success rate and analyze the failure cases using the hydrodynamic piezoelectric internal sinus elevation (HPISE) technique. Materials and Methods: Patients who had been operated in the three centers including Daegu Catholic University Medical Center were selected for this study. The mucoperiosteal flap was elevated, and the sinus floor was then broken by specially designed piezoelectric insert, with hydraulic pressure applied to the sinus membrane for even elevation. Afterward, implants were placed. Panoramic radiogram or computed tomogram was taken before and after surgery and at the second operation and prosthesis placement. Later, changes in vertical height were measured and compared. The survival rate was based on the criteria of Buser et al. and Cochran et al. Results: In this study, 8 implants failed out of a total of 169 implants, resulting a success rate of 95.3%. These failure cases were due to insufficient initial stability or sinus membrane perforation. The mean of radiographic vertical height change at prosthesis placement was 5.7 mm (0.5-10.5 mm). Conclusion: In this study, HPISE technique was found to be a predictable treatment for atrophic maxilla and an alternative technique to the lateral approach.