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Nonlinear Fluid Forces on Hinged Wavemakers
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Abstract!  The nonlinear hydrodynamic pressure force and moment on hinged wavemakers or vari-
able-draft are presented. A closed-form solution (correct 1o second-order) for the nonlinear wavemaker
boundary value problem has been obtained by emiploying the Stokes perturbation expansion scheme.
The physical significance of the second-order contributions to the hydrodynamic pressure moment are
examined in detail. Design curves are presented which demonstrate both the magnitude of the second-
order nonlinearities and the effects of the variable-drati hinge height. The second-order contributions
1o the total hydrodynamic force and moment consist ot a time-dependent and a steady part. The sum of
the first and second-order pressure force and moment show a significant increase over those predicted
by linear wavemaker theory. The second-order etfects arc shown to vary with both relative water depth
and wave amplitude. The second-order dynamic effecis are relatively more important for hinged
wavemakers with shallower drafls.
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1. INTRODUCTION

The basic linear wavemaker theory for forced har-
monic surface gravity wa+es derived by Havelock
(1929) and later by Biesel and Suquet (1953) has been
extended to design cu.ves by Gilbert et al. (1972) for
three types of wavemakers which are commonly
encountered in many modern wave flumes. Limited
experimental verification of these design curves were
discussed by Krishnamackar (1972) and by Gilbert er
al. (1972). Hyun (1976) extended the basic theoretical
solution for the periodic waves to the case of a hing-
ed-type wavemaker with a flap of variable-draft. Ex-

perimental verifications of these wavemaker solu-
tions for various types of wavemaker geometries
have been restricted primarily to the surface wave
profiles {cf., Biesel and Suquet (1953) and Ursell er
al. (1960) for the case of monochromatic linear
waves; and Madsen (1970) and Multer (1973) for the
nonlinear, initial value problem formulated by Ken-
nard (1949)}.

The solution presented by Hyun (1976) for a hing-
ed-type wavemaker of variable-draft was extended by
Hudspeth and Chen (1981) within the limits of
linearized potential wave theory to wave flumes
whcih consist of two constant depth regions sepa-
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rated by a gradually sloping transition region. Design
curves for the wavemaker gain function, S/H, the
dimensionless hydrodynamic pressure moment, M,
moment arm, //e, and wavemaker power, W, for this
type of wave flume geometry were developed. Ex-
perimental verifications of those design curves were
obtained in a large-scale wave flume at the Oregon
State University Wave Research Facility (OSU-WRF)
and were reported by Hudspeth et al. (1981).

Weakly nonlinear solutions are relatively scarce
and have been largeiy confined to numerical solu-
tions {cf., Multer (1970, 1973), Multer and Galvin
(1967)} or approximate solutions {cf., Fontanet
(1961), Madsen (1970, 1971), Daugaard (1972), Buhr
Hansen and Svendsen (1974)} for piston-type
wavemakers only. Waveforms of the forced waves
have been mainly studied and detailed design curves
for any of these solutions are nonexistent.

Flick and Guza (1980) investigated the second-
order, nonlinear motion of a hinged wavemaker of
variable-draft. Their approximate solution omitted
both a time-independent term and the analytical,
closed-form expressions for the multiplicative coeffi-
cients required for their solution. The coefficients for
the propagating mode only were computed numeri-
cally. No design curves for engineering application
were attempted.

The approximate solution reported by Flick and
Guza (1980) will now be extended to include the fol-
lowing additional wave flume geometry and time-in-
dependent solution: 1) a variable-draft wavemaker
hinge located either above or below the wavemaker
bottom; 2) a wavemaker stroke amplitude that is
measured at an arbitrary height above the hinge; and
3) a time-independent nonlinear solution which is re-
quired in order to satisfy exactly the inhomogeneous
wavemaker boundary condition. The closed-form
analytic solution presented will be used to develop
design curves similar to those presented by Gilbert er
al. (1971) and Hudspeth and Chen (1981).

2. VARIABLE-DRAFT HINGED WAVE-
MAKER THEORY

For convenience. dimensional variables will be
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Fig. 1 Definition sketch of hinged wavemakers of vari-
able-draft,

made dimensionaless at the outset by the following
physical variables: length scale =h*; time scale=
vh¥/g%; and mass scale =p*(h*)*, in which
h* = dimensional depth of the wave flume, g* = gra-
vitational constant, and #* = fluid mass density. the
relationships between dimensional variables (denoted
by a superscript asterisk, * and dimensionaless
variables are given by the following: h*{x,y,S,d,e,
H,L,w,n} = {x*y*,S*,d*e* H* L*,w*n*}; {k_,q,,
i} = (KEI%; q2R®; 0% ) {4 T) = {5, T*} JEF/R¥;
Je*(h*’ {0, v} ={g*y*} p=p*/p*g*h*; F=F*/
P*g*(h*)3; M= M*/P*g*(h*)4; and E= E*/g*h*.

The two-dimensional irrotational motion of an in-
compressible, inviscid fluid in the wave flume
geometry shown in Fig. 1 may be obtained from the
directional derivatives of a dimensionless scalar
velocity potential, ¢ (x, y, t), according to

ux,y,t)=-9,, v,y t)=-9, (1a,1b)
in which the subscripts denote partial differentiation.

The dimensionless pressure, p, may be determined
from the Bernoulli equation which is given by

p(X.y.t)=¢z—%{¢i+d>§}—y+E (2)
in which E =the dimensionless Bernoulli constant.
For the case of simple harmonic wavemaker motion
with period T=2 r / w, the resulting fluid motion will
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also be simple harmonic and the spatial and temporal
variables may be separated. The fluid motion is also
periodic in x with wave length L=2 = /k.

The dimensionless velocity potential, & (x, y, 1),
must satisfy the following boundary value problem:

O+ b,,=0 ; x>0, —1<y <7y %, 1) (3a)

9,=0 ;X20,y=-1 (3b)

1= 0+ 12O+ FI=E ;x20,y=7(x1)
Bc)

7= @0t &,=0 ;x20,y~7 &,t) ()

DX

a=0 ; on the wavemaker boundary x =y(y,t)
(3e)

The material coordinate surface of the wavemaker
shown in Fig. 1 may be expressed by X=x-X(y,
t) =0 in which x(y, ) = £ (y) sin wt where & (y)=S/2
{(y+1—-d)/e }U( y+1—d); in which S/2 =dimen-
sionless amplitude of the wavemaker motion and
U(e) = Heaviside step function.

The dimensionless velocity potential, @ , the free
surface elevation, 7z, the hydrodynamic pressure, p,
and the Bernoulli constant, E, are expanded in the
=T eNe; = 3
- n=1 n=1
e @;p= HEI e"p;and E= n}il ¢ " E. The smail
parameter € =Hk/2, in which H=dimensionless
wave hight. In addition, the free surface boundary
conditions, Eq . (3c) and (3d) are expanded about
the still water level y=0 in a Taylor series. The
Stokes material derivative of the wavemaker
displacement, DX/Dt, may also be expanded about
its mean position x =0 in a Taylor series;

DX o DX

IYJr(x)& 5t—;+0(s)=0; x=0 (4)

following power series:

By collecting the terms of the same order in Eqs.(3)
and (4) {S/2 is assumed to be of the order of ¢ }, a
set of linear boundary value problems is obtained.

3. LINEAR SOLUTION

The linear boundary value problem from the per-

turbation expansion is the following for order ¢ :

1 Orat 105y =0;%X2>0, —1<y<0 (5a)
19,=0 ;x20,y=-1 (5b)
D+, 0,1+ E, =0 ;x>0,y=0 (5c)
10:=— e ;x=0, ~1<y<0 (5d)

A solution to Eq. (5) may be represented by the
following eigenfunction expansion {cf., Hudspeth
and Chen (1981) or Wehausen (1960)}:

a®(x vy, t)=a,¢, ky)snkx-t)
+cos wth;a,,,qs,,, Kny) exp(—k.x) (6)

in which the dimensionless orthonormal eigenfunc-
tions, ¢(y)and ¢,(y), in the interval of orthogona-
lity, -1 <y < O, are given by ¢(ky)=cosh
k(y + 1)/m; ¢, (kpy)=cos k,, (y+1)/n,,, m>2 and
the normalizing constants are n,2= (2k + sinh 2k)/4k;
n2=(2k,+sin 2k )/4k,, m>2. The eigenvalues k
and k_, are the real roots of @?*=k tanh k, 0®= —k_,
tan k, for m>2. It can be readily shown that
@2m-3)r /2<ky<(m-1)z for m>2. In Eq. (5¢),
{E, is equal to zero. The dimensionless multiplicative
coefficients,a, anda,, are determined from Eq. (5d)
to be

_ —SwD(K) cosech k

a, 2% n,k° (7a)
_ SCU Dm (km)
=" T e m> 2 (7b)

in which D (k) = sinh k{k(1 — d) sinh k — cosh k + cosh

kd-U(d)] and D (k)= k,(1~d)-sin k_+cos
k,~cos {k,deU(d)} The transcendental functions
that contain the Heaviside step function, U (d), are
equal to unity when the hinge is below the wave
flume bottom, i.e., d <0.

Far away from the wavemaker (x >3, say), the
evanescent eigenmodes are sensibly less than 1% of
their value at the wavemaker, and the dimensionless

linear free surface profile, €7 (x,t), is given by
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gn(x, t)=H/2 cos(kx-wt) so that dimensionless wave-
maker gain function, S/H, is

S/H=eknz/D (k) (8)

in agreement with Eq. (17) given by Hyun (1976).
These equations may be shown to be equivalent to
those given by Flick and Guza { (1980), Eq. 12} for
equivalent wave flume geometries. The solution for a
piston type wavemaker may be obtained by letting

d—o- o0

4. SECOND-ORDER SOLUTION

The boundary value problem for the dimension-
less velocity potential correct to second-order, €2, is
given by the following:

1Dert 2 Pyy =0 ;0<x<+00, —1<y<0 (9a)
20y =0 ;0<x<+00, y=—1 (9b)

2Pt .0, +,E: =

o o
g {1¢§:+1¢§r} - 17753;

;0< X< +oo, y=( (9¢c)

1P= 1D Xy — 1D X ; X=0, -1+d<y<0
(9d)

(:9.:+.9,)

Eq. (9d) may be shown to be equivalent to the
second-order kinematic wavemaker boundary condi-
tion given by Flick and Guza {(1980), Eq. 8b} pro-
vided that the sign of the second term on the right-
hand side of their Eq. (6) is changed from a plus to a
minus. Flick and Guza (1980) obtained theirs by re-
quiring continuity of the normal component of the
relative velocity between the fluid on the wavemaker
and the wavemaker boundary. Eq. (9d) was obtained
by the Stoke’s material derivative of a material coor-
dinate using Eq. (3¢) {cf., Kinsman (1965)}. Note
that time-independent terms arise in addition to
second-harmonic terms in the right-hand side of Eq.
(9d) which require a time-independent solution in

20 -

The analytical procedure usually employed to
solve boundary value problems which include inho-
mogeneous boundary conditions on two nonover-
lapping orthogonal boundaries {e.g., Eqgs. (9¢) and
(9d)} involves the linear decomposition of the se-
cond-order velocity potential into two linearly inde-
pendent components; viz. a Stokes free wave poten-
tial, , ®5, and a forced wavemaker wave potential,
L0506, ,0=,0%+,0"

The dimensionless Stokes free wave potential,
, 9 S, is simply the Stokes second-order wave given by

3H?wcosh {2k (y+1)}
32 sinh* k

e,0°=~ sin 2 kx — wt)

(10)

Using this linear decomposition, each dimensionless
potential is now chosen to satisfy only one of the two
inhomogeneous boundary conditions given by Eqgs.
(9¢) and (9d) {cf., Wehausen (1960)}.

The inhomogeneous combined free surface boun-
dary condition given by Eq. (9¢) yields

zq)tft +z¢:f:= - {z¢tst+z¢ys+zEz}
o o
+‘a_t{1¢§:+1¢§} —177'a_y[1¢n+1¢y)
=0; y=0 ] 1)

which gives a well-posed Sturm-Liouville problem
for the dimensionless second-order forced wave po-
tential, , @ f in the y coordinate since the dimension-
less second-order Stokes wave potential, , S, sat-
isfies the inhomogeneous free surface boundary con-
dition. The solution for the dimensionless forced
wave potential, , @, is assumed to be given by

0" (x.v.t)= T(x,y)

+ {B,cos (q;x —2wt)+C, sin(qx - 2wt)} Q, Q)
+ éz {Basin 2wt+C,cos 2wt} Qn (qny)-

exXp (—Qqax) 12

in which the dimensionless orthonormal eigenfunc-
tions, Q, (qy) and Q, (q,¥), in the interval of ortho-
gonality, — 1 <y <0, are Q, (q;y) =cosh qy +1)/N;
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Q, (qy)=cos q, (y+1)/N, for n >2 and the nor-
malizing constants are Nf =(2q;+sinh 2q))/4q;
N2=(2q,+sin 2q,)/4q, for n > 2. The eigenvalues q,
and q, are the real roots of 4w*=q, tanh q, ©*= —q,
tang, forn> 2.

The dimensionless time-independent solution, ¥
(x, y), must satisfy the following boundary value pro-

blem:
Vyrt+¥,=0 ;x>0 —1<y<0 (132)
¥,=0 ;X20,y=-1 (13b)
7,=0 ;X20,y=0 (13c)

U.=— (S axk/4en1) [SlIlh k(Y+1)
+k(y+1-d)coshk(y+1)) -U(y+1-d)
1x=0, ~1<y<0 (13d)

¥, bounded :x > 0 (13e)

A solution is given by the following eigenfunction ex-

pansion:

F(x,y) ~Auxt 5 Antn(uny) exp(—pnx)
(14)

in which the dimensionless orthonormal eigenfunc-
tions, ¥, (x,¥), in the interval of orthogonality,
~1<y<0,are ¥ (uy)= V2 cos u, (y+1) provid-
ed that the dimensionless eigenvalues are y,=nm;
n2 1. The time-independent solution given by Eq.
(14) is related with the mean fluid motion, or the
Eulerian mass circulation in the wave flumes. This
topic was treated in a separate paper presented by
Kim er. al. (1986).

Flick and Guza (1980) computed the propagating
eigenmode coefficients, B, and C,, in Eq. (12)
numerically and did not report values for the evanes-
cent eigenmode coefficients, B, and C,. The dimen-
sionless multiplicative constant coefficients in the
eigenfunction expansion given by Eq. (12) are deter-
mined form Eq. (9d) and are given by the following:

A,=-Sak{den} ' (1-d)Sk) (15
An—a, k/nr)?S{dueZ?(K, ua)t 7 W2 (=1 "¢:(k) 24k, (1-d) Z(k, 1a))

—Va (ﬂnd) ¢ (kd) [2+R(ﬂny k) A (k' /171) T(kd) t (,und)] } (16)
B1 = S - 2 2 -1

2 anR’ (kn, 01) $40:82°(Kn, 4} 7 B K, 1) )

Bo= =S anR’(kn.q0) {40:04" (kn, G0} ~* Bn (K, Q) a8)
C,=3H’wR?(2k, q,) {8q,4(2k,q,)} 7 Q, (q,)cosech Zk

+a,SR*(k,q,) {4q,e4’ (k,q,)} ' I; k, q,) (19)
Cn= 3H20)R2 (Qk, Qn) {8an (Zk, Qn) } - Q n (q,,)cosech 2k

+a,SR*(k,q.) {4q.e Z*(k,qa.)} 7 I (k,qn) (20)

in which

lgml (km.(h) = ¢m(km)Q1(Q1) [3ka(l_d) E(km, Q1) _4522 (km)A(km,QI) _2]

+¢nknd)Q.(a,d) (2~ R(q1, kn) A (kn, Q1) t kad) T (a,d) )

(21a)
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Bmn (km, Qn) = ¢n (km) Q- (Qn) [Sko (1 - d) ) A (km, Qn) -4’ (km) Z(km, Qn) - 2]

+ ¢ knd) Qn (nd) (24 R(Qn, Kn) Z (Ka, 40) t kud) t(q2d) ]

(21b)

Lk, a,)=¢,(kQ.(aq) 3k, (1-d))Ak,q,) +42° k) 2 (k,q,) —2)

+¢:(kd) Q: (@,d) 2-R(a:, k) Z(k, ;) T(kd) T(q,d))

(21c)

I (k, an) = ¢1 (K)Qn (An) (3ko (1-d)) 2 (K, an) +4Q° (k) A (k, qa) —2)

+¢:(kd) Q1 (qad) (2+R(As, k) A (K, qa) T (kd) t(qad)]

in which C(x)=cosh x, S(x)=sinh x, T(x) =tanh x,
t(x)=tan x, k,=w? Q(a)=k,/ e, R(a,
B)=1a/B, Z(a, g )=1+(R)?%, and A (a,
8)=1-(Ry.

The first-and the second-order solutions given by
Egs. (6) and (12) include an infinite number of evane-
scent eigenmodes. The truncation criteria for the
linear solution was the value of L for which

hup () —u (o, ) < (liup (v) D @2

2

{
2u, (Y) = {l

(21d)

in which { e ) is depth-average operator; v =trun-
cation criterion; u,(¥)= @ § (y) represents the di-
mensionless prescribed wavemaker motion; and u
(o, y)="ak &, (ky) + 5 a k. ¢, (k,y) represents
the dimensionless water particle velocity at the
wavemaker. For the linear solution, v is taken as
0.01.

Similarly, the second-order solution was trun-
cated for the values of N, (for sin 2wt) and N, (for cos

2wt) according to Eq. (22) in which

5 (ankaS/4e na) (50 kn (y-+1) Fkn(y+1-d)cos ka(y+1) - UG+1-0)

for sin 2wt

—3H? wk cosh 2k {y+1)/16sinh*k— (Sak/4en,)(sinh k (y+1) +k (y+1~d)
coshk(y+1)) -Uyy+1-d) for cos 2wt (23a)
and
-a,B,Q: (ay) + :2_ ,37BrQ: @) for sin 2wt
2U(0,y) = ve
~20.6:Q:@y) +Z a:CQn(any) for cos 2wt (23b)

For the second-order solution, the truncation cri-
terion in Eq. (22) was raised to a slightly higher pe-
rcentage for shorter hinge drafts (viz., v=0.03 for
d=0.25, and v=0.05 for d=0.50). The evanescent
eigenmodes were found to be more important when
the water depth was relatively deep (i.e.,
h*/L*_ > 0.6) and when the hinge draft was relatively
small (i.e., increasing values of d). The values of L,

N, and N, Varied between 5 < L < 28; 14< N, < 60;
and 1 <N_<60 over the range of —.50<d <.50
and .0l<h*/L *<1.5.

5. FORCE AND MOMENT ON THE
WAVEMAKER

The dimensionless hydrodynamic force and mo-
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ment on the wavemaker may also be expanded in a
power seriesin € asF= &, ." FandM= 2,
& ﬂn Mo

The dimensionless linear hydrodynamic pressure
force exerted on the fluid side only of the wavemaker
may be determined from

Ft)=-w [ eig.0,y,0)dy (24a)

= - F,cos wt— F.sin wt (24b)

in which the dimensionless hydrodynamic pressure
force due to the propagating and the evanescent eig-
enmode is given by

1F,,=%W H k' sech k(sinh k —sinh kd)

(25a)
p __WHKKD! L Dy k)
e oD(K) me:Kinh
(sin kn—sin k,d) (25b)

in which w=dimensionless width of the wavemaker
and k,=2n/L,, L,=T%2n being the dimen-
sionless deep water wave length.

The dimensionless linear hydrodynamic pressure
moment about the wavemaker hinge that is exerted
on the fluid side only of the wavemaker may be deter-
mined from

MO =w [ y+1-d)e,0, 0.7,y
(26a)

(26b)
(26¢)

=,M,cos wt— M,sin wt
=|,M| sin{wt+e,)
in which the dimensionless hydrodynamic pressure

moment due to the propagating and the evanescent
eigenmode is given by

M,=w H k?D(k) cosech 2k (27a)
lMe =W [H kokznf/z D(k) ]
+ 3 D3 () / Ocind) (27)

Eq. (25) and (27) can be readily shown to be identical
with Egs. (21) and (20) given by Hyun (1976).

The dimensionless second-order hydrodynamic
pressure force exerted on the fluid side only of the
wavemaker may be determined from

Fo)=-we' [1 40,0,5.0-75(81 0,1

+.95 (0, y,t) )+ .E} dy

2

w
~ =510 0,0,1) (282)
= —,F,cos 2wt~ ,Fesin 20t -F,, (28b)

in which the last term in Eq. (28a) results from the
pressure above the still water level and the dimen-
sionless Bernoulli constant at second order is given
by %, E=HwY (16 sinh’).

The dimensionless second-order force com«
ponents are given by

Fo=— 20w {-3H?w (S(2k) - S(2kd)] /64kS* (k) +C, (@] (@) ~Qi (@, d))/a,

tatk(k(1-d)/ni-Q &) ¢} K)})/ Bw) - ZZLBM[Q; @n) Q2 (and))/Am

+ m% {a1ankng: (kd) g (knd) (T (kd) +R (kn, k) t (kn0) )/ (4w (Kn, k) ]

+nZL='zaman [ @2~ Smn) ko¢m (km) &n (kn) -

[t[kmd) -t (knd) ]/[1 - R(kn, km)] +8mnknkm (1- d) /nmllnj/ Baw)tt

(l - 5mn) kn¢m (kmd> ¢n (knd) °

(29a)
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2Fe= - 2wW {Bl [Q; (Q1) ‘Q; (Q1d)]/Q1 +:§2 Cm[Q;u (Qm) —Q;n(QMd)]/Qm

~ (@/40) 5 an (2o (5) g (kn) ~Kngh (k) g () 2 (kn, )

- (Rikn, k)T (kd) —t (knd) )1

(29b)

By =—How a1 () f (k) +EP? (1=d)/ (kS ()

5 PaanRn k) (kd) g llad) T

2

[t(kmd) ~t(kn,d) ]/[1 -Rik,, km)] - b\mnR(kny kykn(1 —d)/ (nmnn)]} }

in which

é: (kd) =sinh kd/n,, Q, (9= )=sin(9 )/Np,
and ¢, = Kronecker delta. And And

The dimensionless second-order hydrodynamic

o

we?
2
=,M,cos 2wt~ ,M,sin 2wt — ,M,,

=|,M]|sin Qut+a,) ~ .My,

_+_

(1-d) 9% (0,0,t)

™ (kn, k) (T (kd) +R (kn, k) t (knd))

= 3 antn {1+ Dan) R (Ko, K) g 60) i (K2) + (1= Sn) R 5 1) i (a) b ()

(29¢)

pressure moment about the wavemaker hinge, which
is exerted on the fluid side only of the wavemaker
may be determined form

M(t) =W52./;71 y+1-d) {,8,) (o, Y.t)_%hQi(o, y,t)+.9, (0, y,t))+,.El dy

in which the dimensionless second-order moment components are given by the following integrals:

My—w [ (y+1-d) BH €2k (y+ 1) /165° () ~20C,Q (@Y) + 202 BaQn(as)

: . 1 : 1
B (6 (k) - 71 () 5K 60 0<y) 2 ankndn (ny) = 2 2 anan

Knkn ($n Kny) dn Kny) +¢m (kay) ¢2 (kny) )} dy

wk,

(1-d) (@i g} () - 2

2 2

2 aninda (k) 61 (<))

Mo=-w " (+1-d) (~20BQ @) ~20 3 CaQa(an)

~ Sk 41 () 2 ankadn (kay) dy ~"02 (1= d)a, 6, ()

(30a)
(30b)
(31a)
m{ 2am¢m (kn) (31b)
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M= [ 1= 0k (81 (k9) + 60" (ky)) =28,k $0 (<9) 2 ankadaiy)

2

+ 35 anakakn (Bakay) dn (60Y) + 81 (a¥) 85 (5,5))

wk,

L L
~He o /dsinhk} dy =72 (1-d) (al 81 () + 2 % anan (k) 60 () (310)
6. DESIGN CURVES FOR NONLINEAR ten as
MOMENT
M ~ k,D(k) cosech’k
The dimensional design parameters which are L k?*(1-d) (32a)
most frequently specified for experimental work in
wave flumes are the design wave height, H*, design M. — kok’n} L Do Kn)
. . 17¥7e —-d k ) Kén? (32b)
water depth, h*, and design wave period, T*. Conse- (1-d)D(k) m=: kiny,

quently, it is more desirable to nondimensionalize the
previously derived dimensionless wavemaker vari-
ables by these three design parameters. The dimen-
sionless design curve variables may be defined for the
moment for the wave flume shown in Fig. 1 as M=
M*/[1/2 e*g*w*H*h* (h* — d*)]. The dimensionless
amplitude of the linear hydrodynamic moment on
the hinged wavemaker, Eq. (27), may now be rewrit-

By substituting the values of the multiplicative
constant coefficients given by Eqgs. (7), (17), (18),
(19), (20) into Eq. (31) and by utilizing the
wavemaker gain function given by Eq. (8), the
following expression for the dimensionless amplitude
of the second-order hydrodynamic moment on the
hinged wavemaker may be obtained:

:M,=H {3k, (C(2k) (2k (1-d) T(2k) ~ 1]+ C(2kd) )/ (32k* (1-d) S* (k)

+ (4k,k*/qi (1-d)] -

(3Q. (@))cosech 2k/24(2k, q,) —kni I7 k, q,) )/ (8 DKk) &4* k,q,) SK)] -

Qi (@) (1-4k, (1-d) -Q, (@ d)]

(ko (1-4)/16 8 (k) = (ko/2(1-d)) uik*/ D) )

m=2

£ {(Qn(@n) (1~ 4k, (1~d)) ~Qa (ad) /a5 -

nE;Dn kn)Bnn Kn, Qm) /A Kn, Qm)Knnat +Kom? 0, (K, k) /(4 (1-d)D (k) S(k))

~k, (1-d) mik?/4D(k))* o, (k, ka) —ko mik’/D(k))* o5 (kn, k) /8 (1-d)

—ki (nik*/D(k))* o, (kn, k) /8}

(33a)

:Me=—-Hk, (nik*/D(k))* (Q: (@,) (4k, (1-d) - 1)/2q7 (1-d)

+Q1 (@) Z Do (<a) B (n, ©1)/3* (i, ) Kt

+ Otkok/ (1= 0)) 5| (Qn (@) 8o (1) ~ 14 Qu (0a0)) (30 (an) /2 (2K, 4) S(2K)
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—kn I, Q) / (BDK) 37 (2K, 4 (k) )/, + ok 03/4 (1= d)D()S (k) £ D (k)

2

{1 k) pn (kn) - (A (kn, k) Q" (k) +2R* (kn, k) ~ 2K, (1-d) Z(ka, k)]
+ ¢, (kd) ¢ (knd) (A (km, k) R(kg, k) T (kd) t (knd) —2R* (km, k) )} /(27 (ki, k) Kzina)}

M, = —H%—ko[wk) (2k (1-d) T(2K) ~ 1) + C(2kd) 1/ 32k (1-d) §* (k) )

+ko (1-d) /168* k) +koni o, (k, ky) /(4 (1-d) D (k) §(k))

—ko(1-d) mk*/4D(k))* o, (k, kn)

—ko (ik?/D(k))'os (kn, kn) /8 (1-d) +k& 03k* /D (k)) 20, (Kn, Kn) /8}

in which

71 (<, Kn) = 2 D) 191 09 i () (4 (ki K)
(4 (kn, k) + 2R, k) T () (tad) 1/ (5° (i, k) KEm)

720, Kn) = 2 (Dn (k) /K30")?

O3 (km, kn) =

e
b

2 2

=~ #n (knd) ¢ (Ksd) (14 t(knd) t (ko) )} / (Ml (k) * (1= R (K, k) )?)

(33b)
(33¢)
(34a)
(34b)
(1 - 6‘mn>Dm (km)Dn (kn)R (km, kn) {¢m (km) ¢n (kn) [1+R(koy km)
R(km kn) +ko [R(km, kn) + R(kn, km) - 2] - kod[l -R (km, kn) ]z]/R(km. kn)
(34¢)
(34d)

g, (km. kn) =

e

2 2

Note that the dimensinless second-order moment is
proportional to the dimensionless design wave height
H (= H*/h*) while the dimensionless first-order mo-
ment given by Egs. (32) is independent of H.

The design curves for the linear moment as func-
tions of the relative water depth (h*/L¥*) and hinge
height (d) were given by Hudspeth and Chen (1981).
Similar design tables and discussions were presented
by Hyun (1976). The contributions of the evanescent
eigenmodes to the total hydrodynamic moment were
found to be more pronounced in relatively deep
water for hinged wavemakers with deeper drafts.

The magnitude of the second-order dimensionless

5 D (kn)Da (k) b (k) 1 (r) / (ma (ki)

evanescent (sin 2wt), propagating (cos 2wt) and total
hydrodynamic moments are shown in Fig. 2 as func-
tions of relative water depth h*/L* for the dimen-
sionless design wave height H*/h* =0.1. The magni-
tude of the dimensionless hydrodynamic propagating
mode moments, ,M,, decreases as the relative water
depth increases until a minimum is reached between
.27 < h*/L¥ <.31. For relative water depths beyond
these minimum values, ,M,, increases. Since ,M_ con-
tributes the main portion of the total second-order
hydrodynamic moment, |,M| shows a similar varia-
tion. The dimensionless hydrodynamic evanescent
mode moments, ,M,, demonstrate positive maxima
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Fig. 3 Relative phase angle, @ , between the total hydro-

dynamic moment and displacement of the wave-

maker.

in relative water depth between .25 <h*/Lg§ <.27.
Consequently, their contributions to the total mo-
ments are most prominent in intermediate water dep-
ths. In addition, ,M, also contributes significantly to
,M in deeper water (h/L > 1.0).

The relative importance of the two hydrodynamic
components of the total hydrodynamic pressure mo-
ment can also be seen from the phase angles between
the hydrodynamic pressure moment and the displace-
ment of the hinged wavemaker, a,. Fig. 3 demon-
strates the relative phase angles as functions of the
relative water depth, h*/L¥, for both the linear and

M
7238'g w* i h (h —d”)

1/28%g* wEH*h*(h* - d*)

¢'<'..
(b PUN B AN

ol 05 .o 50 10 15
h” %
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Fig. 4 Contribution of terms to the dimensionless second-
order moment amplitude of a) cos 2wt and b) sin
2wt for dimensionless wavemaker draft d=0.25
and dimensionless wave height H*/h* = 0.1.

second-order hydrodynamic moments. For the linear
moments, Fig. 3 shows that, M, is relatively more
important in deep water; especially when the hinge
height, d, is small. For the second-order moments,
however, ,M, is rather significant in intermediate
water depth; especially for large d. This difference
between the linear and the second-order moments is
not surprising because sz do not physically repre-
sent the same effects as ;M and |M,. For the linear
solution, ;M and ,M, represent the moments due to
the propagating (or resistive) and the evanesceni (or
inertia) wave components, respectively. In classical
naval hydrodynamics, M, and M, are associated
with the damping coefficient and the added mass mo-
ment of inertia, respectively. In contrast, ,M, and
,M, result from both the propagating and the evanes-
cent modes of the first-and the second-order wave
components. They are termed the second-order
‘“‘propagating”’ and ‘‘evanescent’” mode moments
simply for convenience and do not really represent
the moments due to those two components of forced
waves. Therefore, it should not be expected that the
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second-order moments would behave similar to the
linear moments. It is, however, interesting to note
that the ratio of ,M, to ,M, in Fig. 2 is similar to the
ratio of \M, to M, given in Fig. 4 of Hudspeth and
Chen (1981).

The components of the second-order hydrodyna-
mic moment acting on the wavemaker are obtained
from the four terms in Eq. (30a); viz., 1) , #,(0, ¥, 1);
2) 172 1030, y, ) +,8 50, ¥, D]; 3) | 810, 0, V);
and 4) ,E. We remark again that the second-order
velocity potential ,¢is composed of the Stoke’s wave
potential, ,&°, and a forced wave potential, , ¢,
given by Eqgs. (10) and (12), respectively. Fig. 4 shows
the contribution by each of these four terms to ,M,
and ,M, for the case of d=0.25 and H*/
h*=0.10. For other values of d, similar graphs may
be drawn. The hydrodynamic pressure component
due to the Stoke’s wave potential, , ¢, contributes
most to ,M,, in Fig. 4a for shallow water while its con-
tribution diminishes reapidly as the water depth ap-
proaches deep water conditins. The hydrodynamic
pressure component due to the second-order forced
wave potential, , (Df, acts in opposition to the compo-
nent due to , @; in Fig. 4a and cancels the major por-
tion from , ¢} in shallow water. Its contribution to
,M, in intermediate and deep water is more signifi-
cant. It is well known that the Stoke’s perturbation
expansion fails to converge in shallow water
{Wehausen (1960) }. Figure 4a demonstrates this lack
of convergence in (,¢;). However, .M, remains
bounded in Fig. 4a in shallow water region because
of the cancellation between the forced wave (245{)
and the Stoke’s free wave (, ¢}). The contribution
from the quadratic first-order velocity component,
y &7+ 192, decreases gradually in Fig. 4a as relative
water depth increases. The contribution from the
first-order pressure component above still water level
at the wavemaker, | @ ,2, is relatively constant over the
entire relative water depth in Fig. 4a; but its relative
contribution to ,M, increases in deep water.

For ,M, in Fig. 4b, the contribution from , ¢! is
opposed by the contribution from ,q)f;; but it still
contributes a significant portion to ,M, in deep
water. The major portion of ,M, is, however, due to
1 @ 2 over the whole relative water depth considered in

7 T + T T
zsL H*/h*=.10

e d

ol 05 .10 50
w71y
Fig. 5 Ratio of the second-order moment amplitude to the

o - P e | .

sal
10 15

first-order moment amplitude for dimensionless
wave height H*¥*/h* =0.1.

Fig. 4b. The quadratic first order horizontal velocity
1 @ 2 does not contribute to ,M in Fig. 4b.

Fig. 5 shows the ratio of the magnitude of the
second-order total harmonic hydrodynamic moment,
|,M|, to the first-order values, | M|, for the dimen-
sionless design wave hight H=0.1. Nonlinear effects
are more pronounced for shallow and deep water
conditions, and increasing the draft, d, significantly
enhances nolinear effects. Since the dimensionless
second order hydrodynamic moment is proportional
to the dimensionless wave height H, increasing the
value of H will increase the nonlinear effect. How-
ever, for practical applications in most physical wave
flumes, the value of H is limited to usually low values
in shallow and deep water. For higher values of d,
lower values of H are expected due to the high values
of the wavemaker gain function, S/H. For example,
the OUS-WREF studied by Hudspeth and Chen (1981)
is capable of generating wave height up to 1.4 meters
in intermediate water depth (.18 <h*/L¥ <.40) for a
water depth h*=4.4 meters and a hinge height
d*=0. The second-order total hydrodynamic
pressure moments, |[,M|, for these largest waves
represent an increase of up to 23% over the linear
total moments, |,M|. On the other hand, the
largest wave heights generated in shallow (h#/
L& <.03) and in deep water (h*/L%>.8) are aboul
0.5 meters and 0.4 melers, respectively. The ratio
of [,M|/| M| for these two extreme conditions re-
present an increase of about 10% and 15%, respec-
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Fig. 6. Illustrative variations of the hydrodynamic pressure
moment components acting on wave board over a
wave cycle; H* =1.07m, T* =3 5seconds h* =4 4m,
d* =0, w* =3.66™.

tively. Note that [,M| is the magnitude of the second
harmonic variation and does not include the time-in-
dependent second-order moment given by M.

Time varcations of the total moment including the
linear and the second-order components in this facili-
ty for the case of H*=1.07 m, T*=3.5 sec., h*=4.4
m, w*=3.66 m, and d* =0 according to Eqgs. (26c),
(30c) are demonstrated in Fig. 6. In this case, the
maximum second-order total hydrodynamic pressure
moment, M*(t), including the time-independent se-
cond-order moment, ,M¥;, shows an increase of 17%
over the maximum linear moment, & ;M*(t).

The magnitude of the time-independent hydro-
dynamic moment is computed from both the time-in-
dependent components of the quadratic terms of the
linear solution [i.e., Y5(, 02+ 5) and ;¢ ] as well
as from the Bernoulli constant, ,E. Dimensionless
time-independent moments about the hinge of the
wavemaker are shown in Fig. 7 for a dimensionless
design wave height H*/h* =0.1. The larger portion
of the component due to the quadratic first-order
velocity is canceled by both the components due to
the hydrodynamic pressure above still water level,
0 2, and the Bernoulli constant, ,E, but still contri-
butes the major part to ;M for higher values of d.
The contribution of the Bernoulli constant compo-
nent is almost negligible in deep water. The magni-
tude of , My is less than 25% of |,M| except for the
case of d=.50 in shallow water (.01 < h*/L* <.06)
where it represents about 38% of |,M]|.

7. CONCLUSIONS
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Fig. 7 Contribution of terms to dimensionless second-
order time-independent moment for dimensionless
wave height H*/h* = 0.1

The dimensionless nonlinear hydrodynamic pres-
sure force and moment on hinged wavemakers of
variable-draft have been examined. Dimensionless
design curves for the hydrodynamic moment at se-
cond-order are presented.

The hydrodynamic moment at second-order is
found to be dependent on both the water depth and
wavemaker draft in a similar manner as the linear di-
mensionless hydrodynamic moment shows.

The contribution of the second-order evanescent
mode hydrodynamic moment (which is in phase with
wavemaker acceleration) to the total hydrodynamic
moment is significant in intermediate water depths.
Nonlinear effects are pronounced in shallow and
deep water for a given dimensionless wave hight,
H*/h* and for higher values of the wavemaker draft.
The second-order hydrodynamic moment is approx-
imately between 5-25% of the linear values for the di-
mensionless design wave height H*/h*=0.1. The
magnitude of the time-independent hydrodynamic
pressure moment at second-order was shown to be
less than 25% of the amplitude of the harmonic
second-order hydrodynamic pressure moment for
most practical cases considered.
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APPENDIX. NOTATION

The following symbols are used in this paper:
ALA, dimensionless multiplicative coeffi-
cients for time-independent se-
cond-order velocity potential. (All
physical variables in nomenclature
hereafter represent dimensionless
quantities).

a,a, : multiplicative coefficients for the
linear velocity potential.

B,C,B,C, multiplicative coefficients for the
second-order forced wave poten-
tial.

d : height of wavemaker hinge above
the bottom.

e : height of wavemaker piston mea-
sured above wavemaker hinge.

E . Bernoulli constant.

F.F . F.F, total, time-independent, evanes-
cent mode and propagating mode
hydrodynamic pressure force, re-
spectively.

g gravitational constant.

H : deterministic wave height.
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h
k(=27)k,,
)

LL(=g T/2m);

MMM M, :

m’ m

Qlan

dp9m

S/2

U(*)

u,v

X,y

Greek

a,,a;

Tae In Kim and Robert T. Hudspeth

still water depth of wave channel.
wave number for linear pro-
pagating and evanescent eigen-
mode, respectively.

wave length in finite depth and in
deep water, respectively.

total, time-independent, evanes-
cent mode and propagating mode
hydrodynamic moment on the
wavemaker, respectively.
normalizing constant for linear
and second-order solution, respec-
tively.

pressure.

orthonormal eigenfunctions for se-
cond-order solution,

second harmonic wave number for
propagating and evanescenct mode,
respectively.

wavemaker stroke amplitude mea-
sured at the level of wavemaker
piston.

wave period.

time variable,

Heaviside step function

horizontal and vertical component
of water particle velocity, respec-
tively.

total width of wavemaker.

Stoke’s material coordinate for
wavemaker displacement.
horizontal and vertical Cartesian
coordinate axis, respectively, with
origin located at undisturbed water
level at wavemaker.

relative phase angle for total hy-
drodynamic moment at first-and

Hn

w (=27T)

Superscripts
S

Subscripts
p’e

1(2)

second-order, respectively.

small perturbation parameter
equal to Hk/2.

instantaneous water surface eleva-
tion measured positive upwards
from the still water lzvel.

nth eigenvalues for time-indepen-
dent second-order velocity poten-
tial.

truncation criterion for evanescent
eigenmodes.

vertical dependence of the pre-
scribed wavemaker displacement.
fluid density.

temporal and spatial velocity po-
tential,

orthonormal eigenfunctions for
linear solution.
time-indenpendent second-order
velocity potential.

orthonormal eigenfunction for
time-independent second-order
velocity potential.

radian frequency.

prescribed instantaneous wavema-
ker displacement,

: Stoke’s second-order velocity po-

tential.
forced second-order velocity poten-

tial.
dimensional variable.

propagaling (m= 1) and evanescent
eigenmode (m=2).

deep water condition.

linear (second-order).



