• Title/Summary/Keyword: total gate capacitance

Search Result 15, Processing Time 0.021 seconds

Comparative Study on the Structural Dependence of Logic Gate Delays in Double-Gate and Triple-Gate FinFETs

  • Kim, Kwan-Young;Jang, Jae-Man;Yun, Dae-Youn;Kim, Dong-Myong;Kim, Dae-Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.2
    • /
    • pp.134-142
    • /
    • 2010
  • A comparative study on the trade-off between the drive current and the total gate capacitance in double-gate (DG) and triple-gate (TG) FinFETs is performed by using 3-D device simulation. As the first result, we found that the optimum ratio of the hardmask oxide thickness ($T_{mask}$) to the sidewall oxide thickness ($T_{ox}$) is $T_{mask}/T_{ox}$=10/2 nm for the minimum logic delay ($\tau$) while $T_{mask}/T_{ox}$=5/1~2 nm for the maximum intrinsic gate capacitance coupling ratio (ICR) with the fixed channel length ($L_G$) and the fin width ($W_{fin}$) under the short channel effect criterion. It means that the TG FinFET is not under the optimal condition in terms of the circuit performance. Second, under optimized $T_{mask}/T_{ox}$, the propagation delay ($\tau$) decreases with the increasing fin height $H_{fin}$. It means that the FinFET-based logic circuit operation goes into the drive current-dominant regime rather than the input gate load capacitance-dominant regime as $H_{fin}$ increases. In the end, the sensitivity of $\Delta\tau/{\Delta}H_{fin}$ or ${{\Delta}I_{ON}}'/{\Delta}H_{fin}$ decreases as $L_G/W_{fin}$ is scaled-down. However, $W_{fin}$ should be carefully designed especially in circuits that are strongly influenced by the self-capacitance or a physical layout because the scaling of $W_{fin}$ is followed by the increase of the self-capacitance portion in the total load capacitance.

Transistor Sizing and Buffer Insertion Algorithms for Optimum Area under Delay Constraint (지연 제약 하에서 면적의 최적화를 위한 트랜지스터 사이징과 버퍼 삽입 알고리즘)

  • Lee, Sung-Kun;Kim, Ju-Ho
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.7
    • /
    • pp.684-694
    • /
    • 2000
  • For designing circuits for low power systems, the capacitance is an important factor for the power dissipation. Since the capacitance of a gate is proportional to the area of the gate, we can reduce the total power consumption of a circuit by reducing the total area of gates, where total area is a simple sum of all gate areas in the circuit. To reduce the total area, transistor resizing can be used. While resizing transistors, inserting buffer in the proper position can help reduce the total area. In this paper we propose two methods for concurrent transistor sizing and buffer insertion. One method uses template window simulation and the other uses extrapolation. Experimental results show that concurrent transistor sizing with buffer insertion achieved 10-20% more reduction of the total area than when it was done without buffer insertion and template window simulation is more efficient than extrapolation.

  • PDF

A Study on Frequency Response of GaAs MESFET with different Temperatures (온도변화에 따른 GaAs MESFET의 주파수 특성에 관한 연구)

  • 정태오;박지홍;안형근;한득영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.550-553
    • /
    • 2001
  • In this study, unity current gain frequency f$\_$T/ of GaAs MESFET is predicted with different temperatures up to 400 $^{\circ}C$. Temperature dependence parameters of the device including intrinsic carrier concentration n$\_$i/ effective mass, depletion width are considered to be temperature dependent. Small signal parameters such as gate-source, gate dran capacitances C$\_$gs/ C$\_$gd/ are correlated with transconductance g$\_$m/ to predict the unity current gain frequency. The extrinsic capacitance which plays an important roles in high frequency region has been taken into consideration in evaluating total capacitance by using elliptic integral through the substrate. From the results, f$\_$T/ decreases as the temperature increases due to the increase of small signal capacitances and the mobility degradation. Finally the extrinsic elements of capacitances have been proved to be critical in deciding f$\_$T/ which are originated from the design rule of the device.

  • PDF

The Extraction Method of LDD NMOSFET's Metallurgical Gate Channel Length (LDD NMOSFET의 Metallurgical 게이트 채널길이 추출 방법)

  • Jo, Myung-Suk
    • Journal of IKEEE
    • /
    • v.3 no.1 s.4
    • /
    • pp.118-125
    • /
    • 1999
  • A capacitance method to extract the metallurgical channel length of LDD MOSFET's, which is defined by the length between the metallurgical junction of substrate and source/drain under the gate, is presented. The gate capacitances of the finger type and plate type LDD MOSFET gate test patterns with same total gate area are measured. The gate bias of each pattern is changed, and the capacitances are measured with source, drain, and substrate bias grounded. The differences between two test pattern's capacitance data are plotted. The metallurgical channel length is extracted from the peak data at a maximum point using a simple formula. The numerical simulation using two-dimensional device simulator is performed to verify the proposed method.

  • PDF

Characterization of the Dependence of Interconnect Line-Induced Delay Time on Gate Width in ${\mu}m$ CMOS Technology ($0.18{\mu}m$ CMOS Technology에 인터커넥트 라인에 의한 지연시간의 게이트 폭에 대한 의존성 분석)

  • Jang, Myung-Jun;Lee, Hi-Deok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.11
    • /
    • pp.1-8
    • /
    • 2000
  • In this paper, the dependence of interconnect line-induced delay time on the size of CMOSFET gate width is characterized. In case of capacitance dominant interconnect line, the total delay time decreases as transistor size increases. However, there exists a transistor size for minimum total delay time when both of resistance and capacitance of interconnect line become larger than those of transistor. The optimum transistor size for minimum total delay time is obtained using an analytic equation and the experimental results showed good agreement with the calculation.

  • PDF

5-MeV Proton-irradiation characteristics of AlGaN/GaN - on-Si HEMTs with various Schottky metal gates

  • Cho, Heehyeong;Kim, Hyungtak
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.484-487
    • /
    • 2018
  • 5 MeV proton-irradiation with total dose of $10^{15}/cm^2$ was performed on AlGaN/GaN-on-Si high electron mobility transistors (HEMTs) with various gate metals including Ni, TaN, W, and TiN to investigate the degradation characteristics. The positive shift of pinch-off voltage and the reduction of on-current were observed from irradiated HEMTs regardless of a type of gate materials. Hall and transmission line measurements revealed the reduction of carrier mobility and sheet charge concentration due to displacement damage by proton irradiation. The shift of pinch-off voltage was dependent on Schottky barrier heights of gate metals. Gate leakage and capacitance-voltage characteristics did not show any significant degradation demonstrating the superior radiation hardness of Schottky gate contacts on GaN.

Analysis of Process and Layout Dependent Analog Performance of FinFET Structures using 3D Device Simulator (3D Device simulator를 사용한 공정과 Layout에 따른 FinFET 아날로그 특성 연구)

  • Noh, SeokSoon;Kwon, KeeWon;Kim, SoYoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.35-42
    • /
    • 2013
  • In this paper, the analog performance of FinFET structure was estimated by extracting the DC/AC characteristics of the 22 nm process FinFET structures with different layout considering spacer and SEG using 3D device simulator, Sentaurus. Based on the analysis results, layout methods to enhance the analog performance of multi-fin FinFET structures are proposed. By adding the spacer and SEG structures, the drive current of 1-fin FinFET increases. However, the unity gain frequency, $f_T$, reduces by 19.4 % due to the increase in the total capacitance caused by the added spacer. If the process element is not included in multi-fin FinFET, replacing 1-finger with 2-finger structure brings approximately 10 % of analog performance improvement. Considering the process factors, we propose methods to maximize the analog performance by optimizing the interconnect and gate structures.

Effects of Peripheral Pentacene Region on C-V Characteristics of Metal-Oxide-Pentacene Capacitor Structure

  • Jung, Keum-Dong;Jin, Sung-Hun;Park, Chang-Bum;Shin, Hyung-Cheol;Park, Byung-Gook;Lee, Jong-Duk
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1284-1287
    • /
    • 2005
  • Peripheral pentacene region gives a significant influence on C-V characteristics of metal-oxide-pentacene capacitor structure. When the gate voltage goes toward negative, the effect of peripheral pentacene region becomes larger. Remaining gate DC bias constant and changing small signal frequency, the capacitance of peripheral pentacene changes along with frequency so that the total capacitance value also changes. The influence of peripheral pentacene region should be removed to measure accurate C-V characteristics, because it is hard to take into account the effect of the region quantitatively. After removing the influence of peripheral pentacene region, acceptor concentration, flat band voltage and depletion width of pentacene thin film are extracted from an accurate C-V curve as $1.58{\times}10^{17}cm^{-3}$, -1.54 V and 39.4 nm, respectively.

  • PDF

Optimization of 70nm nMOSFET Performance using gate layout (게이트 레이아웃을 이용한 70nm nMOSFET 초고주파 성능 최적화)

  • Hong, Seung-Ho;Park, Min-Sang;Jung, Sung-Woo;Kang, Hee-Sung;Jeong, Yoon-Ha
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.581-582
    • /
    • 2006
  • In this paper, we investigate three different types of multi-fingered layout nMOSFET devices with varying $W_f$(unit finger width) and $N_f$(number of finger). Using layout modification, we improve $f_T$(current gain cutoff frequency) value of 15GHz without scaling down, and moreover, we decrease $NF_{min}$(minimum noise figure) by 0.23dB at 5GHz. The RF noise can be reduced by increasing $f_T$, choosing proper finger width, and reducing the gate resistance. For the same total gate width using multi-fingered layout, the increase of finger width shows high $f_T$ due to the reduced parasitic capacitance. However, this does not result in low $NF_{min}$ since the gate resistance generating high thermal noise becomes larger under wider finger width. We can obtain good RF characteristics for MOSFETs by using a layout optimization technique.

  • PDF

High $f_T$ 30nm Triple-Gate $In_{0.7}GaAs$ HEMTs with Damage-Free $SiO_2/SiN_x$ Sidewall Process and BCB Planarization

  • Kim, Dae-Hyun;Yeon, Seong-Jin;Song, Saegn-Sub;Lee, Jae-Hak;Seo, Kwang-Seok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.2
    • /
    • pp.117-123
    • /
    • 2004
  • A 30 nm $In_{0.7}GaAs$ High Electron Mobility Transistor (HEMT) with triple-gate has been successfully fabricated using the $SiO_2/SiN_x$ sidewall process and BCB planarization. The sidewall gate process was used to obtain finer lines, and the width of the initial line could be lessened to half by this process. To fill the Schottky metal effectively to a narrow gate line after applying the developed sidewall process, the sputtered tungsten (W) metal was utilized instead of conventional e-beam evaporated metal. To reduce the parasitic capacitance through dielectric layers and the gate metal resistance ($R_g$), the etchedback BCB with a low dielectric constant was used as the supporting layer of a wide gate head, which also offered extremely low Rg of 1.7 Ohm for a total gate width ($W_g$) of 2x100m. The fabricated 30nm $In_{0.7}GaAs$ HEMTs showed $V_{th}$of -0.4V, $G_{m,max}$ of 1.7S/mm, and $f_T$ of 421GHz. These results indicate that InGaAs nano-HEMT with excellent device performance could be successfully fabricated through a reproducible and damage-free sidewall process without the aid of state-of-the-art lithography equipment. We also believe that the developed process will be directly applicable to the fabrication of deep sub-50nm InGaAs HEMTs if the initial line length can be reduced to below 50nm order.