• Title/Summary/Keyword: torsional loading

Search Result 181, Processing Time 0.027 seconds

Validation of 3D crack propagation in plain concrete -Part I: Experimental investigation - the PCT3D test

  • Feist, C.;Hofstetter, G.
    • Computers and Concrete
    • /
    • v.4 no.1
    • /
    • pp.49-66
    • /
    • 2007
  • The objective of this paper is to provide experimental data on the propagation of curved crack-surfaces and the respective load-displacement diagrams for the validation of numerical models for cracking of concrete, subjected to three-dimensional stress states. To this end beam-shaped specimens are subjected to combined bending and torsional loading, leading to the formation of a spatially curved crack-surface. The experimental data contain the evolution of the load and of the strains at selected points in terms of the crack mouth opening displacement and the propagation of the crack surface.

Analysis Evaluation of Torsional Behavior of Hybrid Truss Bridge according to Connection Systems (격점구조형식에 따른 복합트러스교의 비틀림 거동 해석)

  • Choi, Ji-Hun;Jung, Kwang-Hoe;Kim, Tae-Kyun;Lee, Sang-Won;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.1
    • /
    • pp.3-12
    • /
    • 2014
  • Hybrid Truss Bridge (HTB) uses steel truss webs instead of concrete webs in prestressed box girder bridges, which is becoming popular due to its structural benefits such as relatively light self-weight and good aesthetics appearance. Since the core technology of this bridge is the connection system between concrete slabs and steel truss members, several connection systems were proposed and experimentally evaluated. Also, the selected joint system was applied to the real bride design and construction. The research was performed on the connection system, since it can affect the global behavior of this bridge such as flexural and fatigue behaviors as well as the local behavior around the connection region. The evaluation study showed that HTB applied to a curved bridge or an eccentrically loaded bridge had a weak torsional capacity compared to an ordinary PSC box girder bridge due to the open cross-sectional characteristic of HTB. Therefore, three types of girders with different joint system between truss web member and concrete slab were tested for their torsional capacity. In this study, the three different types of HTB girders under torsional loading were simulated using FEM analysis to investigate the torsional behavior of HTB girders more in detail. The results are discussed in detail in the paper.

Transient Torsional Vibration Analysis of Ice-class Propulsion Shafting System Driven by Electric Motor (전기 모터 구동 대빙급 추진 시스템의 과도 비틀림 진동 분석)

  • Barro, Ronald D.;Lee, Don Chool
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.9
    • /
    • pp.667-674
    • /
    • 2014
  • A ship's propulsion shafting system is subjected to varying magnitudes of intermittent loadings that pose great risks such as failure. Consequently, the dynamic characteristic of a propulsion shafting system must be designed to withstand the resonance that occurs during operation. This resonance results from hydrodynamic interaction between the propeller and fluid. For ice-class vessels, this interaction takes place between the propeller and ice. Producing load- and resonance-induced stresses, the propeller-ice interaction is the primary source of excitation, making it a major focus in the design requirements of propulsion shafting systems. This paper examines the transient torsional vibration response of the propulsion shafting system of an ice-class research vessel. The propulsion train is composed of an electric motor, flexible coupling, spherical gears, and a propeller configuration. In this paper, the theoretical analysis of transient torsional vibration and propeller-ice interaction loading is first discussed, followed by an explanation of the actual transient torsional vibration measurements. Measurement data for the analysis were compared with an applied estimation factor for the propulsion shafting design torque limit, and they were evaluated using an existing international standard. Addressing the transient torsional vibration of a propulsion shafting system with an electric motor, this paper also illustrates the influence of flexible coupling stiffness design on resulting resonance. Lastly, the paper concludes with a proposal to further study the existence of negative torque on a gear train and its overall effect on propulsion shafting systems.

Torsional Behavior of Hybrid Truss Bridge according to Connection Systems (복합트러스교의 격점구조별 비틀림 거동)

  • Jung, Kwang-Hoe;Lee, Sang-Hyu;Yi, Jong-Won;Choi, Ji-Hun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.63-72
    • /
    • 2013
  • HTB (hybrid truss bridge) steel truss webs instead of concrete webs in prestressed box girder bridges has been widely used in, because of its structural benefit such as relatively less self-weight and good aesthetics due to open web structure. Since the core technology of this bridge is the connection system between concrete slabs and steel truss members, several connection systems were proposed and experimentally evaluated. Also, the selected joint system was applied to the real bride design and construction. The researches were performed on the connection system, since it can affect the global behavior of this bridge such as flexural and fatigue behaviors as well as the local behavior around the connection region. The evaluation study showned that HTB applied to a curved bridge or a eccentric loading bridge, characteristic has a weak torsional capacity compared to an ordinary PSC box girder bridges due to the open structure of HTB. In this study, three box shaped hybrid truss specimens were made and the torsional test and evaluation for them were performed in order to find out the torsional behavior of HTB according to the connection system.

Lateral-Torsional Buckling Strength of I-girder with Corrugated Steel Webs under Linear Moment Gradient (선형 모멘트 구배가 작용하는 파형강판 I-거더의횡-비틂 좌굴 강도)

  • Moon, Jiho;Lim, Nam-Hyoung;Lee, Hak-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3A
    • /
    • pp.149-160
    • /
    • 2012
  • Corrugated steel plates have several advantages such as high resistance for shear without stiffeners, minimization of welding process, and high fatigue resistance. To take advantage of these benefits, several researchers have attempted to use corrugated steel plate as a web of I-girders. The lateral-torsional buckling is the major design aspect of such I-girders. However, lateral-torsional buckling of the I-girder with corrugated steel webs still needs to be investigated especially for a real loading condition such as non-uniform bending. This paper investigated the lateral-torsional buckling strength of the I-girder with corrugated steel webs under linear moment gradient by using finite element analysis. From the results, it was found that the buckling behavior of the I-girder with corrugated steel webs differed depending on the number of periods of the corrugation. Also, a simple equation for the moment gradient correction factor of the I-girder with corrugated steel webs was suggested. The inelastic lateral-torsional buckling strength of the I-girder with corrugated steel webs was then discussed based on current design equations for ordinary I-girders and the results of finite element analysis.

Fatigue Analysis of Crankshaft for Medium-speed Diesel Engine (중속 디젤엔진 크랭크축의 피로해석)

  • Son, Jung-Ho;Lee, Jong-Hwan;Kim, Won-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.549-553
    • /
    • 2007
  • Moving parts of the rotating and reciprocating mechanism are the most important components of the diesel engines and require very high reliability in their design. Especially the crankshaft, the key component of running gear (powertrain), is subject to complicated loadings such as bending, shear and torsion coming from firing pressure, inertia forces and torsional vibration of crankshaft system. Intrinsically they show different cyclic patterns of loading in both direction and magnitude, and thus ordinary approach of proportional loading is less valid to analyze the dynamic structural behavior of crankshaft. In this paper, new fatigue analysis method is introduced to analyze and design the crankshaft of a medium-speed diesel engine in order to consider the non-proportional multi-axial loads realistically as well as to present the general fatigue analysis approach for an engine crankshaft.

  • PDF

Static performance of a new GFRP-metal string truss bridge subjected to unsymmetrical loads

  • Zhang, Dongdong;Yuan, Jiaxin;Zhao, Qilin;Li, Feng;Gao, Yifeng;Zhu, Ruijie;Zhao, Zhiqin
    • Steel and Composite Structures
    • /
    • v.35 no.5
    • /
    • pp.641-657
    • /
    • 2020
  • A unique lightweight string truss deployable bridge assembled by thin-walled fiber reinforced polymer (FRP) and metal profiles was designed for emergency applications. As a new structure, investigations into the static structural performance under the serviceability limit state are desired for examining the structural integrity of the developed bridge when subjected to unsymmetrical loadings characterized by combined torsion and bending. In this study, a full-scale experimental inspection was conducted on a fabricated bridge, and the combined flexural-torsional behavior was examined in terms of displacement and strains. The experimental structure showed favorable strength and rigidity performances to function as deployable bridge under unsymmetrical loading conditions and should be designed in accordance with the stiffness criterion, the same as that under symmetrical loads. In addition, a finite element model (FEM) with a simple modeling process, which considered the multi segments of the FRP members and realistic nodal stiffness of the complex unique hybrid nodal joints, was constructed and compared against experiments, demonstrating good agreement. A FEM-based numerical analysis was thereafter performed to explore the effect of the change in elastic modulus of different FRP elements on the static deformation of the bridge. The results confirmed that the change in elastic modulus of different types of FRP element members caused remarkable differences on the bending and torsional stiffness of the hybrid bridge. The global stiffness of such a unique bridge can be significantly enhanced by redesigning the critical lower string pull bars using designable FRP profiles with high elastic modulus.

Design Optimization of Double-deck Train Carbody Under Multi-loading Condition (다중하중조건에서 2층열차 차체의 최적설계)

  • Lee, Tae-Hee;Lee, Jin-Min;Jung, Jae-Jun;Hwang, Won-Ju;Kim, Hyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1472-1478
    • /
    • 2006
  • Double-deck train has been attracted growing attention as next generation transportation around metropolis because of high passenger carrying capacity. To develop high-speed double-deck train with low operational costs, the carbody must be designed as light as possible. In addition, the carbody must be strong enough to ensure the safety of passengers. To meet these design requirements, we perform systematically weight minimization that determines thickness of aluminum extruded panels of the carbody. First, to reduce the design variables, we carry out the screening process that select sensitive or/and important design variables through design exploration. Then, weight minimization is accomplished under multi-loading condition such as vertical, compressive and torsional loads, while satisfying strength constraints of the design regulations. Finally, the result of design optimization is discussed by comparison with its initial design.

Condition assessment of steel shear walls with tapered links under various loadings

  • He, Liusheng;Kurata, Masahiro;Nakashima, Masayoshi
    • Earthquakes and Structures
    • /
    • v.9 no.4
    • /
    • pp.767-788
    • /
    • 2015
  • A steel shear wall with double-tapered links and in-plane reference was developed for assisting the assessment of the structural condition of a building after an earthquake while maintaining the original role of the wall as a passive damper device. The double-tapered link subjected to in-plane shear deformation is designed to deform torsionally after the onset of local buckling and works as an indicator of the maximum shear deformation sustained by the shear wall during an earthquake. This paper first examines the effectiveness of double-tapered links in the assessment of the structural condition under various types of loading. A design procedure using a baseline incremental two-cycle loading protocol is verified numerically and experimentally. Meanwhile, in-plane reference links are introduced to double-tapered links and greatly enhance objectivity in the inspection of notable torsional deformation with the naked eye. Finally, a double-layer system, which consists of a layer with double-tapered links and a layer with rectangular links made of low-yield-point steel, is tested to demonstrate the feasibility of realizing both structural condition assessment and enhanced energy dissipation.

Evaluation of Modulus of Soils Using Various Laboratory Tests (다양한 실내시험을 이용한 지반의 탄성계수 평가)

  • 권기철;김동수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.345-352
    • /
    • 2000
  • It is very important to evaluate the reliable nonlinear modulus characteristics of soils not only in the analysis of geotechnical structures under working stress conditions but also for the soil dynamic problems. For the evaluation of modulus characteristics of soils, various tests have been mostly employed in laboratory. However, different testing techniques are likely to have different ranges of reliable strain measurements, different applied stress level, and different loading frequencies, and the modulus of soils can be affected by these variables. For reliable evaluation, therefore, those effects on the modulus need to be considered, and measured values should be effectively adjusted to actual conditions where the soil is working. In this paper, to evaluate the modulus characteristics of soils, laboratory testing such as free-free resonant column (FF-RC), resonant column (RC), torsional shear (TS), static TX, and cyclic M/sub R/ tests were performed. The effects of strain amplitude, loading frequency, loading cycles, confining pressure, density, and water content on modulus were investigated. It is shown that the FF-RC test, which is simple and inexpensive testing technique, can provide a reliable estimation of small strain Young's modulus (E/sub max/), and the modulus evaluated by various laboratory tests are comparable to each other fairly well when the effects of these factors are properly taken into account.

  • PDF