• Title/Summary/Keyword: torsion constant

Search Result 49, Processing Time 0.019 seconds

Mitigating the effect of urban layout on torsion of buildings caused by infill walls

  • Noorifard, Azadeh;Tabeshpour, Mohammad Reza;Saradj, Fatemeh Mehdizadeh
    • Earthquakes and Structures
    • /
    • v.23 no.2
    • /
    • pp.151-168
    • /
    • 2022
  • Torsion is one of the most important causes of building collapse during earthquakes. Sometimes, despite the symmetric form of the building, infill walls disturb the symmetry of the lateral resisting system. The purpose of this research is to investigate the effect of urban layout on developing torsion caused by infill walls. For this purpose, a typological study was conducted based on the conditions of perimeter walls on 364 buildings and then 9 cases were selected. The dimensions of the selected buildings are constant and the conditions of the perimeter walls including facades with openings and cantilevered facades are variable. The selected buildings with 60 different layouts of infill walls were analyzed and the behavior of each one was evaluated based on the torsional irregularity criteria of seismic codes. The results of the analyses showed that if the perimeter walls of a building are symmetric, asymmetric interior walls will not be important in developing torsion and effective parameters in symmetry of the perimeter infill walls are the number of walls, area of openings, aspect ratio, and construction details. Finally, architectural solutions to mitigate the torsional effects of infill walls were proposed for buildings with solid infill walls on some sides, for buildings where the perimeter walls of one side are on the cantilevered part, and for buildings where the perimeter walls of two adjacent sides are on the cantilevered part. In three-sided buildings, where two adjacent façades are cantilevered, it is often impossible to use the potential of the infill walls.

Influence of the Geometry of Guide Groove on Stress Corrosion Index of Rock in Double Torsion Test (이중 비틀림 시험에서 유도 홈의 형상이 암석의 응력부식지수에 미치는 영향)

  • 정해식;미원우삼;전석원
    • Tunnel and Underground Space
    • /
    • v.14 no.5
    • /
    • pp.363-372
    • /
    • 2004
  • Double torsion (DT) tests were carried out to investigate the influence of the geometry of guide groove on stress corrosion index of Kumamoto andesite. The fracture toughness was measured in the constant displacement rate, which was set to 2.07 MN/m$^{3}$2/ in average regardless of crack velocity. Stress corrosion indices, n were evaluated using specimens with rectangular, circular and triangular grooves and were 37, 36 and 38 in average, respectively. The n values were constant regardless of the groove geometry, however the DT specimen with triangular groove geometry showed the largest standard deviation in the relationship between crack velocity and stress intensity factor. The DT test was found to be effective in using a rectangular-grooved specimen and the width of the groove must be greater than the average grain size of minerals.

Unbalanced wind buffeting effects on bridges during double cantilever erection stages

  • Mendes, Pedro A.;Branco, Fernando A.
    • Wind and Structures
    • /
    • v.4 no.1
    • /
    • pp.45-62
    • /
    • 2001
  • This paper is focused on the torsional effects that are induced on bridge piers by unbalanced wind buffeting on the deck during double cantilever erection stages. The case of decks with variable cross section is considered in particular as this characteristic is typical of most frame bridges that are built by the cantilever method. The procedure outlined in the paper is basically an application of the method that Dyrbye and Hansen (1996) have illustrated for decks with constant cross section. This format was chosen because it is suitable for design purposes and may easily be implemented in structural codes. As a complement, the correspondence with the format that is adopted in the Canadian code (NBCC 1990) for the gust factor is established, which might be useful to bridge designers used to the North-American approach to the gust effects on structures. Only alongwind turbulence and horizontal movements of the deck are considered. The combination of torsional and bending effects is also discussed and it is illustrated with an example of application.

Torsional parameters importance in the structural response of multiscale asymmetric-plan buildings

  • Bakas, Nikolaos;Makridakis, Spyros;Papadrakakis, Manolis
    • Coupled systems mechanics
    • /
    • v.6 no.1
    • /
    • pp.55-74
    • /
    • 2017
  • The evaluation of torsional effects on multistory buildings remains an open issue, despite considerable research efforts and numerous publications. In this study, a large number of multiple test structures are considered with normally distributed topological attributes, in order to quantify the statistically derived relationships between the torsional criteria and response parameters. The linear regression analysis results, depict that the center of twist and the ratio of torsion (ROT) index proved numerically to be the most reliable criteria for the prediction of the modal rotation and displacements, however the residuals distribution and R-squared derived for the ductility demands prediction, was not constant and low respectively. Thus, the assessment of the torsional parameters' contribution to the nonlinear structural response was investigated using artificial neural networks. Utilizing the connection weights approach, the Center of Strength, Torsional Stiffness and the Base Shear Torque curves were found to exhibit the highest impact numerically, while all the other torsional indices' contribution was investigated and quantified.

A Study on Influence Line of Curved I-Girder Grid Bridge with Constant Cross Section (등단면 I-형 곡선 격자형교의 영향선에 관한 연구)

  • Chang, Byung Soon;Ryoo, Eun Yeol;Joo, Jae Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.501-513
    • /
    • 1997
  • The general behavior of curved girder including the warping effects is formulated by series of differential equations postulated by Vlasov. In order to determine the maximum shear force, the maximum bending moment, the maximum pure torsion, the maximum warping torsion, and the maximum bimoment for the curved girder grid bridges, it is important to find the location of live load applied to the curved girder grid bridges, so that the influence line can be estimated. In this paper, the influence line of shear force, bending moment, pure torsion, warping torsion, and bimoment due to unit vertical load and unit torsional moment for curved I-girder grid bridges are obtained by using the finite difference method.

  • PDF

Fracture Behaviors of Alumina Tubes under Combined Tension/Torsion (알루미나 튜브의 인장/비틀림 조합하중하의 파괴거동)

  • 김기태;서정;조윤호
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.1
    • /
    • pp.19-19
    • /
    • 1991
  • Fracture of Al2O3 tubes for different loading path under combined tension/torsion was investigated. Macroscopic directions of crack propagation agreed well with the maximum principal stress criterion, independent of the loading path. However, fracture strength from the proportional loading test(τ/σ= constant) showed either strengthening or weakening compared to that from uniaxial tension, depending on the ratio τ/σ. The Weibull theory was capable to predict the strengthening of fracture strength in pure torsion, but not the weakening in the proportional loading condition. The strengthening or weakening of fracture strength in the proportional loading condition was explained by the effect of shear stresses in the plane of randomly oriented microdefects. Finally, a new empirical fracture criterion was proposed. This criterion is based on a mixed mode fracture criterion and experimental data for fracture of Al2O3 tubes under combined tension/torsion. The proposed fracture criterion agreed well with experimental data for both macroscopic directions of crack propagation and fracture strengths.

BIHARMONIC CURVES IN 3-DIMENSIONAL LORENTZIAN SASAKIAN SPACE FORMS

  • Lee, Ji-Eun
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.967-977
    • /
    • 2020
  • In this article, we find the necessary and sufficient condition for a proper biharmonic Frenet curve in the Lorentzian Sasakian space forms 𝓜31(H) except the case constant curvature -1. Next, we find that for a slant curve in a 3-dimensional Sasakian Lorentzian manifold, its ratio of "geodesic curvature" and "geodesic torsion -1" is a constant. We show that a proper biharmonic Frenet curve is a slant pseudo-helix with 𝜅2 - 𝜏2 = -1 + 𝜀1(H + 1)𝜂(B)2 in the Lorentzian Sasakian space forms x1D4DC31(H) except the case constant curvature -1. As example, we classify proper biharmonic Frenet curves in 3-dimensional Lorentzian Heisenberg space, that is a slant pseudo-helix.

Torsional analysis of heterogeneous magnetic circular cylinder

  • Zenkour, Ashraf M.
    • Steel and Composite Structures
    • /
    • v.17 no.4
    • /
    • pp.535-548
    • /
    • 2014
  • In this paper, the exact closed-form solutions for torsional analysis of heterogeneous magnetostrictive circular cylinder are derived. The cylinder is subjected to the action of a magnetic field produced by a constant longitudinal current density. It is also acted upon by a particular kind of shearing stress at its upper base. The rigidity of the cylinder is graded through its axial direction from one material at the lower base to another material at the upper base. The distributions of circumferential displacement and shear stresses are presented through the radial and axial directions of the cylinder. The influence of the magnetostrictive parameter is discussed. The effects of additional parameters are investigated.

SLANT HELICES IN THE THREE-DIMENSIONAL SPHERE

  • Lucas, Pascual;Ortega-Yagues, Jose Antonio
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1331-1343
    • /
    • 2017
  • A curve ${\gamma}$ immersed in the three-dimensional sphere ${\mathbb{S}}^3$ is said to be a slant helix if there exists a Killing vector field V(s) with constant length along ${\gamma}$ and such that the angle between V and the principal normal is constant along ${\gamma}$. In this paper we characterize slant helices in ${\mathbb{S}}^3$ by means of a differential equation in the curvature ${\kappa}$ and the torsion ${\tau}$ of the curve. We define a helix surface in ${\mathbb{S}}^3$ and give a method to construct any helix surface. This method is based on the Kitagawa representation of flat surfaces in ${\mathbb{S}}^3$. Finally, we obtain a geometric approach to the problem of solving natural equations for slant helices in the three-dimensional sphere. We prove that the slant helices in ${\mathbb{S}}^3$ are exactly the geodesics of helix surfaces.

Magnetic Coupling in Oxoverdazyl-Benzene-Oxoverdazyl Diradical Systems: A DFT Study

  • Park, Young Geun;Ko, Kyoung Chul
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.25-35
    • /
    • 2013
  • The intramolecular magnetic coupling constant (J) values of diradical-based magnet models (S1-S5) were studied using unrestricted density functional theory. The model systems were designed with series of oxoverdazyl radicals (o-Ver(N) and o-Ver(C)) linked through a benzene coupler. They were divided according to either connectivity of the radical (C or N) or geometrical topology (meta- and para-) of benzene coupler. Reasonable relationship was found between spin density distribution and sign of J value. With our results we determined ferromagnetic (positive J value) and antiferromagnetic (negative J value) interactions. J values were also calculated along the twisting movement by the scan of dihedral angles between the radical and the coupler. An overall trend was found as absolute value of J decreased over increasing torsion angles.

  • PDF