• Title/Summary/Keyword: torque shear bolt

Search Result 14, Processing Time 0.018 seconds

Prediction of Joining Torque for Bit Depth of Subminiature Bolt (초소형 볼트의 비트 깊이에 따른 체결 토크 예측)

  • Lee, Hyun-Kyu;Park, Keun;Ra, Seung-Woo;Kim, Jong-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.8
    • /
    • pp.917-923
    • /
    • 2014
  • Subminiature joining bolts are required for the electronic parts of gadgets such as mobile phones and watch phones. During the miniaturization of bolt heads, it is difficult to obtain sufficient joining force owing to the risk of shear fracture of the bolt head or severe plastic deformation on the bit region. In this study, the maximum joining torque for the bit depth was predicted using finite element analysis. A shear fracture test was conducted on a wire used in bolt forming. The results of this test were subjected to finite element analysis and a fracture criterion was obtained by comparing the experimental and analysis results. The shear fracture of the bolt head during joining was predicted based on the obtained criterion. Furthermore, the maximum joining torque was predicted for various bit depths. Fracture on the boundary between the bolt head and thread was found to occur in lower joining torque as bit depth increases.

A Study on the Secure Plan of Clamping Force according to the Variation of Torque-Coefficient in Torque-Shear High Strength Bolts (토크전단형 고력볼트의 토크계수 변동에 따른 체결축력 확보방안에 관한 연구)

  • Lee, Hyeon-Ju;Nah, Hwan-Seon;Choi, Sung-Mo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.3
    • /
    • pp.8-16
    • /
    • 2014
  • Torque control method and turn of nut method are specified as clamping method of high strength bolts in the steel construction specifications. Quality control of torque coefficient is essential activity because torque control method, which is presently adopted as clamping method in domestic construction sites, is affected by variation of torque coefficient. The clamping of torque shear bolt is based on KS B 2819. It was misunderstood that the tension force of the TS bolt was induced generally at the break of pin-tail specified. However, the clamping forces on slip critical connections do not often meet the intended tension, as it considerably varies due to torque coefficient dependent on the environmental factors and temperature variables despite the break of the pin tail.This study was focused to evaluate the effect of environmental factors and errors of installing bolts during tightening high strength bolts. The environmental parameters were composed of 'wet' condition, 'rust' condition, 'only exposure to air' condition. And the manufacture of trial product was planned to identify the induced force into the bolts. The algorithm for a trial product was composed of the relation between electricity energy taken from torque shear wrench and tension force from hydraulic tension meter.

An Experimental Study on the Fatigue Behavior of Torque Shear Type High Tension Bolted Joints (Torque Shear형 고장력 볼트 이음부의 피로거동에 관한 실험적 연구)

  • CHANG, Dong Il;Lee, Sung Uk
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.3 s.28
    • /
    • pp.151-160
    • /
    • 1996
  • The fatigue test under the constant amplitude repeated loading is performed to investigate the fatigue behavior of the Torque Shear type high tension bolted joint which is able to manage the axial force uniformly. From the test results, it's known that the reduction of the axial force of T/S bolt followed by the elasped time is similar to that of the high tension bolts. The difference of relaxation is not occurred according to the position of bolts, the size of the introduced axial force but the effect of the variation of temperature is large. In the reduction of the axial force followed by the cumulation of the fatigue load, the outer bolt is larger than the inner bolt. This result depends on the difference in the distribution of the non-slip zone. The variation of the surface roughness affects the slip and the reduction of the anal force.

  • PDF

Development of the Method for Inspecting the Clamping Force of Torque Shear Bolts Using the Electricity energy of Electric torque wrench (전동렌치 전기에너지를 이용한 토크쉬어볼트의 체결축력 검사기법 개발)

  • Lee, Hyeon-Ju;Nah, Hwan-Seon;Kim, Kang-Sik;Kim, Kang-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.162-170
    • /
    • 2010
  • The torque-coefficient of torque-shear type high-strength bolts is affected by the environmental factors, such as 'wet', 'rust', 'exposure to air' and workability during tightening high strength bolts. It is difficult to assume the direct tension induced into the bolt due to variation of torque-coefficient for torque-shear type high-strength bolts. Therefore, it is essential to measure tension loads of bolts and to verify the clamping force under construction. In this study, the manufacture of trial product was planned to identify the induced force into the bolts. The algorithm for a trial product was composed of the relation between electricity energy taken from torque shear wrench and tension force from hydraulic tension meter. The regression analysis equation to measure the direct tension was derived by statistical analysis using Minitab program. It is considered that the trial product is reliable tool to evaluate the tension force comparable to a commercial torque wrench.

Evaluation on Clamping force of High Strength Bolts By Temperature Parameter (온도변수에 따른 고력볼트 체결력 평가)

  • Nah, Hwan Seon;Lee, Hyeon Ju;Kim, Kang Seok;Kim, Jin Ho;Kim, Woo Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.3
    • /
    • pp.399-407
    • /
    • 2008
  • The clamping of torque shear bolt is based on KS B 2819. It was misunderstood that the tension force of the TS bolt was induced generally at the break of pin-tail specified. However, the clamping forces on slip critical connections do not often meet the intended tension, as it considerably varies due to torque coefficient dependent on temperature variables despite the break of the pin tail. In this study, the tension of torque shear bolts were compared with two types of high-strength hexagon bolts by temperature parameters from ${-10^{\circ}C}$ to ${50^{\circ}C}$. Torque shear bolts showed that the average clamping force increased to 20kN as the temperature increased. In case of galvanized high-strength hexagon bolts, the average clamping forces at $0^{\circ}C$, $20^{\circ}C$, $50^{\circ}C$ were recorded over standard bolt tension, 178kN, and the worst standard deviation was 50kN. In case of high-strength hexagon bolts, ave rage clamping forces increased as the temperature went up, and the worst standard deviation was 33kN lower than that of galvanized high-strength hexagon bolts. As for the turn-of-the-nut method, at nut rotation of ${90^{\circ}}$, two types of high-strength hexagon bolts did not met the intended design bolt in tension, 162kN.it is neccessary to re-evaluate the range of turn of nut, ${120^{\circ}{\pm}30^{\circ}}$.

Experimental Study on the Torque Coefficient and Clamping Force of High Strength Bolts Subjected to Environmental Parameters (고력볼트 시공환경에 따른 토크계수와 체결축력에 관한 실험적 연구)

  • Lee, Hyeon Ju;Nah, Hwan Seon;Kim, Kang Seok;Kim, Jin Ho;Kim, Jin Man
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.43-53
    • /
    • 2008
  • Because the torque control method, which is also caled the clamping method in domestic construction sites, is affected by a variation of the torque coefficient, quality control of the torque coefficient is essential. This study was focused to evaluate the effects of several environmental factors and errors when installing bolts while tightening high-strength bolts. Conditioning environmental parameters include wet, rusty and exposure-to-air-only conditions. In addition, because of errors in workability such as instalation of two washers, upset washers are selected. During the tests, torque, torque coefficient, tension and angle of nut rotation were obtained using a bolt testing machine. Test specimens of four types of bolts (High-Strength Hexagon bolt on KS B 1010, Torque Shear Bolt on KS B 2819, High-Strength Hexagon bolt coated with zinc, and ASTM 490 bolt) were recomended. Based on test results, the tightening characteristics subjected to environmental parameters were investigated and compared with the results in normal condition.

An Evaluation of Clamping Characteristics for High Strength Bolts with Variable Bolt Lengths (고력볼트 길이에 따른 체결 특성 평가)

  • Lee, Kang Min;Kim, Kang Seok;Nah, Hwan Seon;Lee, Hyeon Ju;Oh, Kyung Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.127-134
    • /
    • 2011
  • It has been reported that the length parameter of high strength bolts results in the variance in tensile loads. The required turn of nut for each length is specified in AISC RCSC specification. There is no specific regulation datum about the bolt length in the two national codes and specifications in Korea. Therefore this study focused on evaluating influence of the clamping torque subjected to length parameter of high strength bolts. Two types of high strength bolt specimens were manufactured and tested; High Strength Hexagon bolt specified in ASTM A490 and Torque Shear Bolt in KS B 2819. The length parameter ranged from 60mm(3d) to 140mm(7d). The torque, turn of nut, and the clamping force were analyzed to review whether length parameter affects on the required tensile strength. To evaluate the effects of the length parameter on the torque and turn of nut for the required strength and clamping force, statistical analysis was also carried out.

Analysis of Self Loosening of Aiming Bolts in Vehicle Head Lamp (자동차 헤드램프 내의 에이밍 볼트의 풀림 해석 및 실험)

  • Moon, Ji-Seung;Baek, Hong;Park, Sang-Shin;Park, Jong-Myeong
    • Tribology and Lubricants
    • /
    • v.35 no.1
    • /
    • pp.65-70
    • /
    • 2019
  • Self-loosening of bolts owing to external forces occurs in several machines that are clamped by bolts and nuts. This study focuses on the self-loosening of the aiming bolt of the head lamp in a vehicle. It is important to prevent the aiming bolt from self-loosening as it has a decisive effect on the angle of the head lamp. A nut clamped with a bolt, known as a retainer, is made of plastic and has a partial screw thread. In addition, a transverse load has a considerable impact on the self-loosening of a bolt. We concentrate on the self-loosening of a bolt by a transverse load. The aim of this study is to define the limits of the external force that loosen the bolt. Based on the above conditions, we derive a theoretical equation and develop a numerical analysis program that can calculate the limiting forces for self-loosening. To verify the developed program, we design a test device that can measure the self-loosening by applying sliding forces to the aiming bolt. Using this method, we can draw the following conclusions. First, the developed testing device is suitable to prove the theory for calculating the self-loosening force. Second, the equation confirms the relationship of bolt self-loosening between resistance torque and shear force. Finally, the equation obtains the minimum value of the resistance torque required to decrease the change in the angle of the head lamp, thereby improving the possibility of increasing the stability of the head lamp.

Estimation on Clamping Force of High Strength Bolts Considering Temperature Variable of Both Site conditions and Indoor Environments (실내환경과 건설현장 온도변수를 고려한 고력볼트 체결력 예측)

  • Nah, Hwan-Seon;Lee, Hyeon-Ju
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.3
    • /
    • pp.32-40
    • /
    • 2015
  • The torque shear high strength bolt is clamped normally at the break of pin-tail specified. However, the clamping forces on slip critical connections do not often meet the required tension, as it considerably fluctuates due to torque coefficient dependent on lubricant affected temperature. In this study, the clamping tests of torque shear bolts were conducted independently at indoor conditions and at construction site conditions. During last six years, temperature of candidated site conditions was recorded from $-11^{\circ}C$ to $34^{\circ}C$. The indoor temperature condition was ranged from $-10^{\circ}C$ to $50^{\circ}C$ at each $10^{\circ}C$ interval. As for site conditions, the clamping force was reached in the range from 159 to 210 kN and the torque value was from 405 to $556 N{\cdot}m$. The range of torque coefficient at indoor conditions was analyzed from 0.126 to 0.158 while tensions were indicated from 179 to 192 kN. The torque coefficient at site conditions was ranged from 0.118 to 0.152. Based on this test, the variable trends of torque coefficient, tension subjected temperature can be taken by statistic regressive analysis. The variable of torque coefficient under the indoor conditions is $0.13%/^{\circ}C$ while it reaches $2.73%/^{\circ}C$ at actual site conditions. When the indoor trends and site conditions is combined, the modified variable of torque coefficient can be expected as $0.2%/^{\circ}C$. and the modified variable of tension can be determined as $0.18%/^{\circ}C$.

Estimation on clamping load of high strength bolts considering various environment conditions

  • Nah, Hwan-Seon;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.399-408
    • /
    • 2017
  • Of high strength bolts, the torque shear type bolt is known to be clamped normally when pin-tails are broken. Sometimes the clamping loads on slip critical connections considerably fluctuate from the required tension due to variation of torque coefficient. This is why the viscosity of lubricant affects the torque coefficient by temperature. In this study, the clamping tests of high strength bolts were performed independently at laboratory conditions and at outdoor environment. The temperatures of outdoor environment candidates were ranged from $-11^{\circ}C$ to $34^{\circ}C$ for six years. The temperature at laboratory condition was composed from $-10^{\circ}C$ to $50^{\circ}C$ at each $10^{\circ}C$ interval. At outdoor environment conditions, the clamping load of high strength bolt was varied from 159 to 210 kN and the torque value was varied from 405 to 556 Nm. The torque coefficients at outdoor environment were calculated from 0.126 to 0.158 when tensions were measured from 179 to 192 kN by using tension meter. The torque coefficients at outdoor environment conditions were analyzed as the range from 0.118 to 0.152. From these tests, the diverse equations of torque coefficient, tension dependent to temperature can be acquired by statistic regressive analysis. The variable of torque coefficient at laboratory conditions is 0.13% per each $1^{\circ}C$ when it reaches 2.73% per each $1^{\circ}C$ at outdoor environment conditions. When the results at laboratory conditions and at outdoor environment were combined to get the revised equations, the change in torque coefficient was modified as 0.2% per each $1^{\circ}C$ and the increment of tension was adjusted as 1.89 % per each $1^{\circ}C$.