• Title/Summary/Keyword: torque control.

Search Result 2,916, Processing Time 0.064 seconds

Nonlinear Control of Torque and Speed of S.I.Engines Using Electric Throttle Control (트로틀 앵글 제어에 의한 내연기관의 토오크 및 속도의 비선형 제어)

  • 원문철;강병배;박문수;김태영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.72-81
    • /
    • 1999
  • A nonlinear engine torque and speed control algorithm using throttle angle control is developed with an engine load torque estimation algorithm. Three 3-dimensional nonlinear engine maps as a part of the nonlinear control algorithm are obtained from steady state engine dynamometer tests. An electric throttle actuator is developed using a stepper motor and a 8 bit micro-processor. The speed control and external load estimation algorithm are tested via engine speed control experiments, and show performance good enough for using various engine torque and speed control applications.

  • PDF

Torque Sensorless Decentralized Position/Force Control for Constrained Reconfigurable Manipulator via Non-fragile H Dynamic Output Feedback

  • Zhou, Fan;Dong, Bo;Li, Yuanchun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.418-429
    • /
    • 2018
  • This paper studies the decentralized position/force control problem for constrained reconfigurable manipulator without torque sensing. A novel joint torque estimation scheme that exploits the existing structural elasticity of the manipulator joint with harmonic drive model is applied for each joint module. Based on the estimated joint torque and dynamic output feedback technique, a decentralized position/force control strategy is presented. In order to solve the problem of controller parameter perturbation, the non-fragile robust technique is introduced into the dynamic output feedback controller. Subsequently, the stability of the closed-loop system is proved using the Lyapunov theory and linear matrix inequality (LMI) technique. Finally, two 2-DOF constrained reconfigurable manipulators with different configurations are applied to verify the effectiveness of the proposed control scheme in numerical simulation.

Development of High Precision Fastening torque performance Nut-runner System (고정밀 체결토크 성능 너트런너 시스템 개발)

  • Kim, Youn-Hyun;Kim, Sol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.35-42
    • /
    • 2019
  • Nut fasteners that require ultra-precise control are required in the overall manufacturing industry including electronic products that are currently developing with the automobile industry. Important performance factors when tightening nuts include loosening due to insufficient fastening force, breakage due to excessive fastening, Tightening torque and angle are required to maintain and improve the assembling quality and ensure the life of the product. Nut fasteners, which are now marketed under the name Nut Runner, require high torque and precision torque control, precision angle control, and high speed operation for increased production, and are required for sophisticated torque control dedicated to high output BLDC motors and nut fasteners. It is demanded to develop a high-precision torque control driver and a high-speed, low-speed, high-response precision speed control system, but it does not satisfy the high precision, high torque and high speed operation characteristics required by customers. Therefore, in this paper, we propose a control technique of BLDC motor variable speed control and nut runner based on vector control and torque control based on coordinate transformation of d axis and q axis that can realize low vibration and low noise even at accurate tightening torque and high speed rotation. The performance results were analyzed to confirm that the proposed control satisfies the nut runner performance. In addition, it is confirmed that the pattern is programmed by One-Stage operation clamping method and it is tightened to the target torque exactly after 10,000 [rpm] high speed operation. The problem of tightening torque detection by torque ripple is also solved by using disturbance observer Respectively.

A Study on the Sensorless Speed Control of Induction Motor by New Direct Torque Control (새로운 직접토크제어에 의한 유도전동기의 센서리스 속도제어)

  • Kim, Jong-Su;Seo, Dong-Hoan;Kim, Seung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1105-1110
    • /
    • 2011
  • This paper presents an improved direct torque control based on artificial neural networks technique. The major problem that is usually associated with DTC drive is the high torque(speed) ripple. To overcome this problem a torque hysteresis band with variable amplitude is proposed based on artificial neural networks. The artificial neural networks proposed controller is shown to be able to reducing the torque(speed) ripple and dependency on motor parameter and to improve performance DTC especially at high speed and reversal running.

Advanced Logical Non-Linear Torque Sharing Function for Torque Ripple Reduction of SRM (SRM의 토크리플 저감을 위한 개선된 논리적 비선형 토크분배기법)

  • Kim, Tae-Hyoung;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.887_888
    • /
    • 2009
  • In this paper, an advanced torque control scheme of Switched Reluctance Motor (SRM) using modified non-linear logical TSF (Torque Sharing Function) based on the DITC (direct instantaneous torque control) with PWM(Pulse Width Modulation). In the proposed control scheme, a simple calculation of PWM duty ratio, switching rules from DITC and non-linear torque sharing function can reduce the torque ripple with fixed switching frequency. The proposed control scheme is verified by the computer simulations and experimental results.

  • PDF

Voltage Vector Selection Area of the Direct Torque Control for Permanent Magnet Synchronous Motor

  • Li, Yaohua;Ma, Jian;Yu, Qiang;Liu, Jingyu
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.23-29
    • /
    • 2012
  • The control of stator flux, torque angle, excitation torque, reluctance torque and total torque of the direct torque control (DTC) for a permanent magnet synchronous motor (PMSM) are studied in this paper. Simplified expressions to represent the changes of these variables due to the application of a voltage vector are given. Finally, a voltage vector selection area and the implementation of a voltage vector selection strategy are proposed.

A Programmable-Dynamometer Control For Propulsin system combined Testing (추진장치 조합시험을 위한 프로그램어블 다이나모메터 제어)

  • Kim, Gil-Dong;Lee, Han-Min;Oh, Seh-Chan;Kang, Seung-Wook;Lee, Hun-Gu
    • Proceedings of the KIEE Conference
    • /
    • 2005.10a
    • /
    • pp.180-183
    • /
    • 2005
  • A programmable dynamometer is the proposed system improved the problem of the torque measuring delay with torque transducer, and the load torque is estimated by the minimal order state observer based on the torque component of the vector control induction moter. Therefore, the torque controller is not affected by a load torque disturbance. To verify a superiority of the proposed control algorithm, the analysis for a root locus of a conventional control method and the proposed one, and simulation and experiment is performed. Therefore we hope to be extended in industrial application.

  • PDF

Design of Model-based VCU Software for Driving Performance Optimization of Electric Vehicle

  • Changkyu Lee;Youngho Koo;Kwangnam Park;Gwanhyung Kim
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.4
    • /
    • pp.351-358
    • /
    • 2023
  • This study designed a model-based Vehicle Control Unit (VCU) software for electric vehicles. Electric vehicles have transitioned from conventional powertrains (e.g., engines and transmissions) to electric powertrains. The primary role of the VCU is to determine the optimal torque for driving control. This decision is based on the driver's power request and current road conditions. The determined torque is then transmitted to the electric drive system, which includes motors and controllers. The VCU employs an Artificial Neural Network (ANN) and calibrated reference torque to enhance the electric vehicle's performance. The designed VCU software further refines the final reference torque by comparing the control logic with the torque calculation functions and ANN-generated reference torque. Vehicle tests confirmed the effective optimization of vehicle performance using the model-based VCU software, which includes an ANN.

A Novel Direct Torque Control of Induction Machines based on Stator Flux (고정자 자속을 기반으로 한 유도전동기의 새로운 직접 토크 제어)

  • 박준현;정종진;최종우;김흥근;노의철;부경대학교전기제어계측공학부조교수
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.297-302
    • /
    • 2002
  • The direct torque control(DTC) of induction machines has the advantages of a simple control scheme and a very quick and robust torque response and its application is extended in the traction field. However, some drawbacks of the conventional DTC strategy using a hysteresis controller are the relatively large torque ripple in the steady state and the variation of switching frequency according to the amplitude of hysteresis bands and the motor operating conditions. In this paper, a navel direct t()roue control scheme of induction machines based on stator flux control and Space Vector Modulation Is proposed to acquire the advantage of a fixed switching period and the minimization of the torque and stator current ripple in a wide speed range. The effect of proposed method has been proven by simulations and experiments.

An Improvement of SRM Vibration by using of Self-Tunning Control (자기동조 이론을 이용한 SRM의 진동소음 특성개선)

  • 정승주;여진기;오인석;성세진
    • Proceedings of the KIPE Conference
    • /
    • 1996.06a
    • /
    • pp.80-84
    • /
    • 1996
  • A Switched Reluctance Motor(SRM) has a torque pulsating inherently due to characteristics of pulse driving. A torque pulsating causes noise and sound vibration. To reduce a noise, a torque pulsating shall be controlled. Many efforts to make flat-topped current has been proposed to minimize a torque pulsating up to now. This paper proposed a control scheme to minimize the vibration of SRM by controlling the vibration directly by using of self-turning technique. The experimental results show that the proposed control scheme is effective in reducing the torque ripple and noise.

  • PDF