• Title/Summary/Keyword: toroidal coil

Search Result 40, Processing Time 0.03 seconds

A Study on Thermo-Hydraulic Analysis for KSTAR(Korea Superconducting Tokamak Advanced Research) Cooling Line System (KSTAR(Korea Superconducting Tokamak Advanced Research) 냉각 시스템에 대한 열해석 연구)

  • Kim, H.W.;Ha, J.S.;Kim, D.S.;Lee, J.S.;Choi, C.H.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.296-301
    • /
    • 2003
  • A study on the engineering design and numerical thermo-hydraulic analysis for KSTAR TF coil structure cooling system has been conducted. The numerical analyses have been done to verify the engineering design of cooling using the commercial code, FLUENT and in-house code for calculating helium properties which varies with cooling tube's heat transfer. Through the engineering design process based on the steady heat balance concepts, the circular stainless steel tube with inner diameter of 4 mm for TF coil has been selected as cooling tube. From normal operation mode analysis results, total 28 cooling tubes were finally chosen. Also, three dimensional cool down analysis for TF coil with designed cooling tube was satisfied with next three design criteria. First is cooling work termination within a month, second is maximum temperature difference within 50 K in TF coil structure and third is exit helium pressure above 2 bar. Consequently, these cool down scenario results can afford to adopt as operating scenario data when KSTAR facilities operate.

  • PDF

Design Study of LAR Tokamak Reactor with a Self-consistent System Analysis Code

  • Hong, B.G.;Lee, D.W.;Kim, S.K.;Kim, D.H.;Lee, Y.O.;Hwang, Y.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.314-314
    • /
    • 2010
  • The design of the blanket and shield play a key role in determining the size of a reactor since it has an impact on the various reactor components. The blanket should produce enough tritium for tritium self-sufficiency and the shield should provide sufficient protection for the superconducting TF coil. Neutronic optimization of the blanket and the shield is necessary, and we coupled the system analysis with a neutronic calculation to account for the interrelation of the blanket and shield with the plasma performance of a reactor system in a self-consistent manner. By using the coupled system analysis code, the operational space for a low aspect ratio (LAR) tokamak reactor with a superconducting toroidal field (TF) coil is investigated with an spect ratio in the range of 1.5 - 2.5. The minimum major radius which satisfies all the physics and engineering requirements increases with the magnetic field at the magnetic axis. A required inboard shield thickness is mainly determined by the requirement on the protection of the TF coil against radiation damage. It is shown that to have a fusion power bigger than 3,000 MW in the LAR tokamak with a superconducting TF coil, a major radius bigger than 4.0 m is required.

  • PDF

The Design of Cryogenic System for KSTAR TOKAMAK (KSTAR TOKAMAK을 위한 저온시스템의 설계)

  • 김동락;오영국;정영수;이정민;최창호;임기학;허남일;김양수;박영민
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.48-49
    • /
    • 2001
  • Cryogenic technology is one of the key technologies for fusion reactor equipped with superconducting coil for plasma confinement. The KSTAR(Korea Superconducting Tokamak Advanced Research)Project is in progress since 1996. Major parameters of the KSTAR tokamak are : major radius 1.8m, minor radius 0.5m, toroidal field 3.5 Tesla and plasma current 2MA with a strongly shaped plasma cross-section and double -null diverter. Considering practical engineering constraints, the KSTAR device is designed for a pulse length of 300 sec in up-graded operation mode but in the initial configuration would provide a pulse length of 20 sec provided by the poloidal coil system in base-line operation mode. The cryogenic system is composed as follows : cold box, helium compressor system, distribution box, helium gas buffer tank, helium gas purifying system, gas recovery system, liquid helium storage dewar, current lead box, current bus line and liquid nitrogen storage tank.

  • PDF

Development of Floating Power Supply for Current Measurement System of High Voltage Power Line

  • Oota, Ichirou;Hattori, Hiroaki;Nishiyama, Eiji;Matsuda, Toyonori;Kawano, Mitsunori;Kuwanami, Kenji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.88.5-88
    • /
    • 2002
  • A new floating power supply for the current measurement system of a high voltage power line is developed. It is confirmed that, the current measurement system can stably transfer the signal of the power line current about 50 - 300 A by using the proposed power supply. The excellent characteristics are obtained by the steady-state and transient experiments of the proposed circuit. $\textbullet$ The right figure shows the external view of the trial measurement system for 6.6 kV. In order to see the inside, 120 degrees of the insulator is cut. The toroidal coil for the power supply and the Rogowskii coil for the current sensor are both divided into two and fixed on the power line as...$\textbullet$ The proposed circuit can supply +5V and -5V voltages without using a solar cell and/or a battery.

  • PDF

Optimum Radial Build of a Low Aspect Ratio Tokamak Reactor

  • Hong, B.G.;Hwang, Y.S.;Kang, J.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.397-397
    • /
    • 2011
  • In a low aspect ratio (LAR) tokamak reactor with a superconducting toroidal field (TF) coil, the radial build of TF coil and the shield play a key role in determining the size of a reactor. For self-consistent determination of the reactor components and physics parameters, a system analysis code is coupled with one-dimensional radiation transport code. Conceptual design study of a compact superconducting LAR tokamak reactor with aspect ratio less than 2.5 was conducted and the optimum radial build was identified. It is shown that the use of an improved shielding material and high temperature superconducting magnets with high critical current density opens up the possibility of a fusion power plant with compact size and small re-circulating power simultaneously at low aspect ratio, and that by using an inboard neutron reflector instead of breeding blanket, tritium self-sufficiency is possible with outboard blanket only and thus compact sized reactor is viable.

  • PDF

The evaluation of FAT for Master Control System of PFCS in ITER Coil Power Supply System (ITER 초전도코일 전력공급장치의 PFCS Master Control System 시험 평가)

  • Shin, H.K.;Oh, J.S.;Lee, D.B.
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.109-110
    • /
    • 2018
  • ITER 토카막의 초전도코일에 전원을 공급하는 Plant는 CCPS (Correction Coil Power Supply System), TFPS(Toroidal Field Power Supply System), PFCS(Poloidal Field & Central Solenoid)으로 구성되어 있다. 각 Plant의 AC/DC 컨버터는 초전도 코일에 막대한 전류를 흘려 토카막 내에서 1억도에 달하는 열과 전자장의 압력으로 플라즈마상태의 수소를 결합시켜 핵융합에 도달하도록 한다. MCS(Master Control System)은 플라즈마가 핵융합을 잘 구현할 수 있도록 초전도 코일에 공급하는 전원을 총괄적으로 제어한다. 특히 PFCS MCS는 토카막 장치에서 다른 Plant와의 Interface가 복잡하여 설계 및 제작에 어려움이 많다. 본 논문에서는 PFCS MCS가 ITER의 설계요건과 국제기술기준에 맞게 설계하고, 제작하였는지를 확인하기 위해 공장에서 최종 검사하는 FAT(Factory Acceptance Test) 절차를 소개하고 여러 가지 시험을 통하여 평가한 내용을 보이고자 한다.

  • PDF

A Study on the Analysis of Magnetic Field in Magnetic Deflection Yoke Based on the Oblate Spheroidal coordinates (Oblate Spheroidal 좌표계를 이용한 자기 편형요크내의 자장 해석에 관한 연구)

  • Seo, Jeong-Doo;Yoo, Hyeong-Seon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.117-124
    • /
    • 1993
  • This paper presents the study on the magnetic field analysis of magnetid deflection yoke using integral equation method. An integral equation method is developed for the computer modeling of the magnetic fields produced by color CRT and T.V. deflection yoke. Deflection of electron beams using magnetic fields is applied in a variety of display instruments such as te.evision receivers, electron probe instruments, etc. The magnetic field is solved by dividing these into the finite elements in the whole domain : the saddle coil which deflects the electron heam horizontally, the toroidal coil which deflects it vertically, magnetic core which enhances the magnetid fields genterated by the both coils. Using oblate spheroidal coordinates, this paper has had an easier access to the shape of magnetic deflection yoke chasing the boundaries than other coordinates.

  • PDF

Displacement Current in a Parallel Plate Capacitor Biased by DC Voltages (직류전압을 건 평행판 축전기에서 변위전류 고찰)

  • Kim, Jae-Dong;Jang, Taehun;Ha, Hye Jin;Sohn, Sang Ho
    • Journal of Science Education
    • /
    • v.45 no.2
    • /
    • pp.219-230
    • /
    • 2021
  • In this study, we derived several formulas for magnetic fields and induced voltages in a parallel plate capacitor biased by DC voltages. The computer simulation based on the derived formulas reveals that the magnetic fields due to the displacement current fall within the range of 10-10T to 10-9T and thence the experiment for the displacement current is not possible because the magnetic field sensor used in Data Logger could measure the magnetic fields of above 10-5T range. Contrary to this, the computer simulation confirms that the induced voltages in a toroidal coil due to the displacement current range measurable values of 0.002~0.021V. The results imply that the displacement current can be confirmed by measuring the induced voltages in a toroidal coil inserted into a parallel plate capacitor under DC biasing.

Present Status of the KSTAR Superconducting Magnet System Development (KSTAR 초전도자석계통 개발현황)

  • Park, H.K.;Kim, K.M.;Park, K.R.;Lim, B.S.;Lee, S.I.;Chung, W.H.;Chu, Y.;Baek, S.H.
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.298-300
    • /
    • 2003
  • The KSTAR superconducting magnet system consists of 16 TF (Toroidal Field) and 14 PF (Poloidal Field) coils. Both of the TF and PF coil system use internally-cooled Cable-In-Conduit Conductors (CICC). The major achievement in KSTAR magnet system development includes the development of CICC, the development of a full size TF model coil, the development of a background magnetic field generation coil system, the construction of a large scale superconducting magnet. TF and PF coils are in the stage of the fabrication for the KSTAR completion in the year 2005.

  • PDF

Major B-H Loop Measurement of Toroidal Shape Magnetic Powder Core (토로이드형 분말코어의 Major B-H Loop 측정)

  • Son, Derac
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.3
    • /
    • pp.76-80
    • /
    • 2014
  • Toroidal cores made of metallic powder requires large magnetic field strength up to few decade kA/m to obtain major hysteresis loop. To overcome thermal heat generation problem from large exciting current during measurement, we have employed a real time hysteresis loop tracer which can digitize and calculate B-H signals in personal computer as real time. For example, when we magnetize specimen at 10 Hz frequency, we could display hysteresis loops 10 times per second. Using the real time hysteresis loop tracer, we could measure major hysteresis loop of toroidal shape metallic powder core at maximum flux density or maximum magnetic field strength to be measured within 5 second not to significant increasement of specimen temperature due to the heat dissipation from coil windings. For the constructed hysteresis loop tracer, we could measure hysteresis loop at magnetic field strength higher than 50 kA/m for the toroidal shape specimen.