• Title/Summary/Keyword: tornado

Search Result 81, Processing Time 0.019 seconds

Response of transmission line conductors under different tornadoes

  • Dingyu Yao;Ashraf El Damatty;Nima Ezami
    • Wind and Structures
    • /
    • v.37 no.3
    • /
    • pp.179-189
    • /
    • 2023
  • Multiple studies conducted in the past evaluated the conductor response under one tornado wind field, while the performance of transmission lines under different tornado wind fields still remains unknown. Thus, the objective of this paper is to estimate the variation in the conductor's critical longitudinal and transverse reactions under different tornado wind fields, as well as providing the corresponding critical tornado configurations. The considered full-scale tornadoes are the Spencer, South Dakota, 1998, the Stockton, Kansas, 2005 and the Goshen County, Wyoming, 2009. Computational Fluid Dynamics (CFD) simulations were previously conducted to develop these wind fields. All tornadoes have been rescaled to have a common velocity matching the upper limit of the F2 Fujita scale. Eight conductor systems, each including six spans, are considered in this paper. For each conductor, parametric studies are conducted by varying the location of the three tornado wind fields relative to the tower of interest, therefore the peak reactions associated with each tornado are determined. A semi-analytical closed-form solution, previously developed and validated, is used to calculate the reactions. The study conducted in this paper can be divided into two parts: In the first part, a parametric study considering a wide range of tornado locations is conducted. In the second part, the parametric study focuses on the tornado location leading to the critical tangential velocity on the tower. Based on this extensive parametric study, a critical tornado defined as the Design Tornado and its critical locations, tornado distance R = 125 m, tornado angle 𝜃 = 15° and 30°, are recommended for design purposes.

Laboratory investigation of the effects of translation on the near-ground tornado flow field

  • Razavi, Alireza;Sarkar, Partha P.
    • Wind and Structures
    • /
    • v.26 no.3
    • /
    • pp.179-190
    • /
    • 2018
  • Translation of tornadoes is an important feature in replicating the near-ground tornado flow field which has been simulated in previous studies based on Ward-type tornado simulators using relative motion of the ground plane. In this laboratory investigation, effects of translation on the near-ground tornado flow field were studied using the ISU Tornado Simulator that can physically translate over a ground plane. Two translation speeds, 0.15 m/s and 0.50 m/s, that scale up to those corresponding to slowly-moving tornadoes in the field were selected for this study. Compared with the flow field of a stationary tornado, the simulated tornado with translation had an influence on the spatial distribution and magnitude of the horizontal velocities, early reversal of the radial inflow, and expansion of the core radius. Maximum horizontal velocities were observed to occur behind the center of the translating tornado and on the right side of its mean path. An increase in translation speed, resulted in reduction of maximum horizontal velocities at all heights. Comparison of the results with previous studies that used relative motion of the ground plane for simulating translating tornadoes, showed that translation has similar effects on the flow field at smaller radial distances (~2 core radius), but different effects at larger radial distances (~4 core radius). Further, it showed that the effect of translation on velocity profiles is noticeable at and above an elevation of ~0.6 core radius, unlike those in studies based on the relative motion of the ground plane.

Numerical investigation of effects of rotating downdraft on tornado-like-vortex characteristics

  • Cao, Shuyang;Wang, Mengen;Zhu, Jinwei;Cao, Jinxin;Tamura, Tetsuro;Yang, Qingshan
    • Wind and Structures
    • /
    • v.26 no.3
    • /
    • pp.115-128
    • /
    • 2018
  • Appropriate modeling of a tornado-like vortex is a prerequisite when studying the near-ground wind characteristics of a tornado and tornado-induced wind loads on structures. Both Ward- and ISU-type tornado simulators employ guide vanes to induce angular momentum to converge flow in order to generate tornado-like vortices. But in the Ward-type simulator, the guide vanes are mounted near the ground while in the ISU-type they are located at a high position to allow vertical circulation of flow that creates a rotating downdraft to generate a tornado-like vortex. In this study, numerical simulations were performed to reproduce tornado-like vortices using both Ward-type and ISU-type tornado simulators, from which the effects of rotating downdraft on the vortex characteristics were clarified. Particular attention was devoted to the wander of tornado-like vortices, and their dependences on swirl ratio and fetch length were investigated. The present study showed that the dynamic vortex structure depends significantly on the vortex-generating mechanism, although the time-averaged structure remains similar. This feature should be taken into consideration when tornado-like-vortex simulators are utilized to investigate tornado-induced wind forces on structures.

Investigation of Goyang Tornado Outbreak Using X-band Polarimetric Radar: 10 June 2014 (X밴드 이중편파레이더를 활용한 고양 토네이도 발생 사례 분석: 2014년 6월 10일)

  • Jeong, Jong-Hoon;Kim, Yeon-Hee;Oh, Su-Bin;Lim, Eunha;Joo, Sangwon
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.47-58
    • /
    • 2016
  • On 10 July 2014, tornado outbreak occurred over Goyang province in Korea. This was the first supercell tornado ever reported or documented in Korea. The characteristics of the supercell tornado were investigated using an X-band polarimetric radar, surface meteorological observation, wind profiler, and operational numerical weather prediction (Regional Data Assimilation and Prediction System, RDAPS). The supercell tornado developed along a preexisting dryline that was contributed to surface wind shear. The radar analyses examined here show that the supercell tornado indicated a hook echo with mesocyclone. The decending reflectivity core as well was detected before tornadogenesis and prior to intensification of supercell. The supercell tornado exhibited characteristics similar to typical supercell tornado over the Great Plains of the United States, such as hook echo, bounded weak echo region, and slower movement speed relative to the mean wind. Compared to the typical supercell tornado over U.S., this tornado showed horizontal scale of the mesocyclone was relatively smaller and left-mover.

CFD simulations of the flow field of a laboratory-simulated tornado for parameter sensitivity studies and comparison with field measurements

  • Kuai, Le;Haan, Fred L. Jr.;Gallus, William A. Jr.;Sarkar, Partha P.
    • Wind and Structures
    • /
    • v.11 no.2
    • /
    • pp.75-96
    • /
    • 2008
  • A better understanding of tornado-induced wind loads is needed to improve the design of typical structures to resist these winds. An accurate understanding of the loads requires knowledge of near-ground tornado winds, but observations in this region are lacking. The first goal of this study was to verify how well a CFD model, when driven by far field radar observations and laboratory measurements, could capture the flow characteristics of both full scale and laboratory-simulated tornadoes. A second goal was to use the model to examine the sensitivity of the simulations to various parameters that might affect the laboratory simulator tornado. An understanding of near-ground winds in tornadoes will require coordinated efforts in both computational and physical simulation. The sensitivity of computational simulations of a tornado to geometric parameters and surface roughness within a domain based on the Iowa State University laboratory tornado simulator was investigated. In this study, CFD simulations of the flow field in a model domain that represents a laboratory tornado simulator were conducted using Doppler radar and laboratory velocity measurements as boundary conditions. The tornado was found to be sensitive to a variety of geometric parameters used in the numerical model. Increased surface roughness was found to reduce the tangential speed in the vortex near the ground and enlarge the core radius of the vortex. The core radius was a function of the swirl ratio while the peak tangential flow was a function of the magnitude of the total inflow velocity. The CFD simulations showed that it is possible to numerically simulate the surface winds of a tornado and control certain parameters of the laboratory simulator to influence the tornado characteristics of interest to engineers and match those of the field.

Finite element modelling of self-supported transmission lines under tornado loading

  • Altalmas, A.;El Damatty, A.A.
    • Wind and Structures
    • /
    • v.18 no.5
    • /
    • pp.473-495
    • /
    • 2014
  • Localized wind events, in the form of tornadoes and downbursts, are the main cause of the large number of failure incidents of electrical transmission line structures worldwide. In this study, a numerical model has been developed to study the behaviour of self-supported transmission lines under various tornado events. The tornado wind fields used were based on a full three-dimensional computational fluid dynamics analysis that was developed in an earlier study. A three-dimensional finite element model of an existing self-supported transmission line was developed. The tornado velocity wind fields were then used to predict the forces applied to the modelled transmission line system. A comprehensive parametric study was performed in order to assess the effects of the location of the tornado relative to the transmission line under F2 and F4 tornado wind fields. The study was used to identify critical tornado configurations which can be used when designing transmission line systems. The results were used to assess the sensitivity of the members' axial forces to changes in the location of the tornado relative to the transmission line. The results were then used to explain the behaviour of the transmission line when subjected to the identified critical tornado configurations.

Large eddy simulation of the tornado-structure interaction to determine structural loadings

  • Panneer Selvam, R.;Millett, Paul C.
    • Wind and Structures
    • /
    • v.8 no.1
    • /
    • pp.49-60
    • /
    • 2005
  • A tornado changes its wind speed and direction rapidly; therefore, it is difficult to study the effects of a tornado on buildings in a wind tunnel. The status of the tornado-structure interaction and various models of the tornado wind field found in literature are surveyed. Three dimensional computer modeling work using the turbulence model based on large eddy simulation is presented. The effect of a tornado on a cubic building is considered for this study. The Navier-Stokes (NS) equations are approximated by finite difference method, and solved by an semi-implicit procedure. The force coefficients are plotted in time to study the effect of the Rankine combined vortex model. The tornado is made to translate at a $0^{\circ}$ and $45^{\circ}$ angle, and the grid resolution is refined. Some flow visualizations are also reported to understand the flow behavior around the cube.

Computer modeling of tornado forces on buildings

  • Selvam, R. Panneer;Millett, Paul C.
    • Wind and Structures
    • /
    • v.6 no.3
    • /
    • pp.209-220
    • /
    • 2003
  • A tornado changes its wind speed and direction rapidly; therefore, it is difficult to study the effects of a tornado on buildings in a wind tunnel. In this work, the status of the tornado-structure interaction is surveyed by numerical simulation. Various models of the tornado wind field found in literature are surveyed. Three-dimensional computer modeling work using the turbulence model based on large eddy simulation is presented. The effect of tornado on a cubic building is considered for this study. The Navier-Stokes (NS) equations are approximated by finite difference method, and solved by a semi-implicit procedure. The force coefficients are plotted in time to study the effect of the Rankine-Combined Vortex Model. Some flow visualizations are also reported to understand the flow behavior around the cube.

Numerical analysis of a long-span bridge response to tornado-like winds

  • Hao, Jianming;Wu, Teng
    • Wind and Structures
    • /
    • v.31 no.5
    • /
    • pp.459-472
    • /
    • 2020
  • This study focused on the non-synoptic, tornado-like wind-induced effects on flexible horizontal structures that are extremely sensitive to winds. More specifically, the nonuniform, intensive vertical wind-velocity and transient natures of tornado events and their effects on the global behavior of a long-span bridge were investigated. In addition to the static part in the modeling of tornado-like wind-induced loads, the motion-induced effects were modeled using the semi-empirical model with a two-dimensional (2-D) indicial response function. Both nonlinear wind-induced static analysis and linear aeroelastic analysis in the time domain were conducted based on a 3-D finite-element model to investigate the bridge performance under the most unfavorable tornado pattern considering wind-structure interactions. The results from the present study highlighted the important effects due to abovementioned tornado natures (i.e., nonuniform, intensive vertical wind-velocity and transient features) on the long-span bridge, and hence may facilitate more appropriate wind design of flexible horizontal structures in the tornado-prone areas.

Comparative study of analytical models of single-cell tornado vortices based on simulation data with different swirl ratios

  • Han Zhang;Hao Wang;Zhenqing Liu;Zidong Xu;Boo Cheong Khoo;Changqing Du
    • Wind and Structures
    • /
    • v.36 no.3
    • /
    • pp.161-174
    • /
    • 2023
  • The analytical model of tornado vortices plays an essential role in tornado wind description and tornado-resistant design of civil structures. However, there is still a lack of guidance for the selection and application of tornado analytical models since they are different from each other. For single-cell tornado vortices, this study conducts a comparative study on the velocity characteristics of the analytical models based on numerically simulated tornado-like vortices (TLV). The single-cell stage TLV is first generated by Large-eddy simulations (LES). The spatial distribution of the three-dimensional mean velocity of the typical analytical tornado models is then investigated by comparison to the TLV with different swirl ratios. Finally, key parameters are given as functions of swirl ratio for the direct application of analytical tornado models to generate full-scale tornado wind field. Results show that the height of the maximum radial mean velocity is more appropriate to be defined as the boundary layer thickness of the TLV than the height of the maximum tangential mean velocity. The TLV velocity within the boundary layer can be well estimated by the analytical model. Simple fitted results show that the full-scale maximum radial and tangential mean velocity increase linearly with the swirl ratio, while the radius and height corresponding to the position of these two velocities decrease non-linearly with the swirl ratio.