• Title/Summary/Keyword: toric variety

Search Result 6, Processing Time 0.009 seconds

THE F-VECTORS OF SOME TORIC FANO VARIETIES

  • Park, Hye-Sook
    • Journal of applied mathematics & informatics
    • /
    • v.11 no.1_2
    • /
    • pp.437-444
    • /
    • 2003
  • A toric variety is defined by a certain collection of cones. Especially a toric Fano variety is obtained from a special nonsingular fan. In this paper, we define the f-vectors of toric Fano varieties as the numbers of faces of the corresponding fans, and investigate the f-vectors of some toric Fano varieties.

PRODUCTS ON THE CHOW RINGS FOR TORIC VARIETIES

  • Park, Hye-Sook
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.469-479
    • /
    • 1996
  • Toric variety is a normal algebraic variety containing algebraic torus $T_N$ as an open dense subset with an algebraic action of $T_N$ which is an extension of the group law of $T_N$. A toric variety can be described in terms of a certain collection, which is called a fan, of cones. From this fact, the properties of a toric variety have strong connection with the combinatorial structure of the corresponding fan and the relations among the generators. That is, we can translate the diffcult algebrogeometric properties of toric varieties into very simple properties about the combinatorics of cones in affine spaces over the reals.

  • PDF

THE CHOW RINGS FOR 3-DIMENSIONAL TORIC VARIETIES WITH ONE BAK ISOLATED SINGULARITY

  • Park, Hye-Sook
    • Journal of applied mathematics & informatics
    • /
    • v.3 no.1
    • /
    • pp.65-78
    • /
    • 1996
  • The properties of a toric variety have strong connection with the combinatorial structure of the corresponding fan and the rela-tions among the generators. Using this fact we have described explic-itly the Chow ring for a Q-factorial toric variety as the Stanley-Reisner ring for the corresponding fan modulo the linear equivalence relation. In this paper we calculate the Chow ring for 3-dimensional Q-factorial toric varieties having one bad isolated singularity.

GEOMETRIC REPRESENTATIONS OF FINITE GROUPS ON REAL TORIC SPACES

  • Cho, Soojin;Choi, Suyoung;Kaji, Shizuo
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1265-1283
    • /
    • 2019
  • We develop a framework to construct geometric representations of finite groups G through the correspondence between real toric spaces $X^{\mathbb{R}}$ and simplicial complexes with characteristic matrices. We give a combinatorial description of the G-module structure of the homology of $X^{\mathbb{R}}$. As applications, we make explicit computations of the Weyl group representations on the homology of real toric varieties associated to the Weyl chambers of type A and B, which show an interesting connection to the topology of posets. We also realize a certain kind of Foulkes representation geometrically as the homology of real toric varieties.

GROSSBERG-KARSHON TWISTED CUBES AND BASEPOINT-FREE DIVISORS

  • HARADA, MEGUMI;YANG, JIHYEON JESSIE
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.853-868
    • /
    • 2015
  • Let G be a complex semisimple simply connected linear algebraic group. The main result of this note is to give several equivalent criteria for the untwistedness of the twisted cubes introduced by Grossberg and Karshon. In certain cases arising from representation theory, Grossberg and Karshon obtained a Demazure-type character formula for irreducible G-representations as a sum over lattice points (counted with sign according to a density function) of these twisted cubes. A twisted cube is untwisted when it is a "true" (i.e., closed, convex) polytope; in this case, Grossberg and Karshon's character formula becomes a purely positive formula with no multiplicities, i.e., each lattice point appears precisely once in the formula, with coefficient +1. One of our equivalent conditions for untwistedness is that a certain divisor on the special fiber of a toric degeneration of a Bott-Samelson variety, as constructed by Pasquier, is basepoint-free. We also show that the strict positivity of some of the defining constants for the twisted cube, together with convexity (of its support), is enough to guarantee untwistedness. Finally, in the special case when the twisted cube arises from the representation-theoretic data of $\lambda$ an integral weight and $\underline{w}$ a choice of word decomposition of a Weyl group element, we give two simple necessary conditions for untwistedness which is stated in terms of $\lambda$ and $\underline{w}$.