• Title/Summary/Keyword: topping concrete

Search Result 53, Processing Time 0.022 seconds

Shear Performance Evaluation of the Joint between Hollow Core Slabs (Hollow core 슬래브 간 접합부의 전단저항성능 평가)

  • Hong, Geon-Ho;Baek, Jong-Sam;Park, Hong-Gun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.94-101
    • /
    • 2010
  • Recently, the interest of precast concrete is increased for rapid construction in construction fields. Experimental study about the shear performance of the joint between hollow core slabs which have internal core to reduce their weight was performed. Main test variables were thickness of the topping concrete and existence of the wiremesh. Total 8 specimens including 4 in-plane shear and 4 out of plane shear were tested. Test results were analyzed in terms of cracking load, failure load, failure aspect, stiffness and ductility, and compared its design load to develop optimum design details. Test results indicated that the shear performance of the non-shrinkage mortar specimen was similar to that of 30mm thickness topping concrete specimen, and the effect of wiremesh reinforcement did not affect the failure load or stiffness of the specimens but the increase of ductility. And this paper presents the comparison results of the test results and design load to provide the optimum detail of the joint design between the hollow core slabs.

The Flexural Behavior including Ductility of Half Precast Concrete Slab with Welded Deformed Wire Fabric (용접철망을 사용한 반두께 P.C.슬래브의 휨 및 연성거동)

  • 이광수;최종수;조민형;신성우
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.4
    • /
    • pp.153-160
    • /
    • 1994
  • Ten Half precast concrete slabs reinforced with welded deformed wire fabric were tested under two concentrated loads to investigate the flexural moment and ductile capacity. The test variables were the compressive strength of topping concrete, quantitative roughness, and reinforcernent ratio. The effects of each test variables were studied separately. Test results were as followings. The ultimate strength design method is applicable to predict flexural strength for Half P.C. concrete slab with welded deformed wire fabric and quantitative roughness. It is proper to consider 0.0035 strain ;is yielding stress of the welded deformed wire fabric. The ductility index of Half precast concrete slab with welded deformed wire fabric showed lower value. Therefore to enhance the ductility capacity the normal defomed bar should be used with the welded deformed wire fabric for the longitudinal reinforcement.

Flexural performances of deep-deck plate slabs: Experimental and numerical approaches

  • Inwook Heo;Sun-Jin Han;Khaliunaa Darkhanbat;Seung-Ho Choi;Sung Bae Kim;Kang Su Kim
    • Steel and Composite Structures
    • /
    • v.52 no.3
    • /
    • pp.313-325
    • /
    • 2024
  • This work presents experimental and numerical investigations on the flexural performances of composite deep-deck plate slabs. Seven deep-deck plate slab specimens with topping concrete were fabricated; the height of the topping slab as well as presence and type of shear connector were set as the main variables to perform bending experiments. The flexural behaviors of the specimens and composite behaviors of the deck plate and concrete were analyzed in detail. The contributions of the deck plate to the flexural stiffness and strength of the slab were identified through finite element (FE) analysis. FE analysis was carried out using the validated FE model by considering the varying bond strengths of the deck plates and concrete, thickness of the deck plate, and types and spacings of the shear connectors. Based on the results, the degree of composite of the deep-deck plate was examined, and a flexural strength equation for the composite deck plate slabs was proposed.

Evaluation of the Basic Properties of Concrete with Types of Cellulose Fibers (셀룰로오스 섬유 종류에 따른 콘크리트의 기초 물성 평가에 관한 연구)

  • Park, Yong-Kyu;Lee, Joo-Hun;Jeon, In-Ki;Kim, Hyun-Woo;Yoon, Ki-Woon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.5
    • /
    • pp.419-425
    • /
    • 2011
  • Topping concrete that is not reinforced with rebar to prevent poor tensile performance is vulnerable to cracking. In this study, jute, which is known to be an excellent natural fiber material for strengthening concrete performance, was compared with other cellulose fibers in terms of its capacity to reduce the cracking of concrete. As a result, it was found that compared with concrete using other fibers, concrete using jute fiber showed more than a 50 % reduction of plastic shrinkage crack resistance with the contents of 0.9 kg/$m^3$ and 1.2 kg/$m^3$ for. For impact strength tests, the final destruction of WF and PULP fibers took up to 5 times the number of falls, while jute has 10-18 circuitry, showing excellent ductility properties.

Flexural Capacity of Precast Concrete Triple Ribs Slab (프리캐스트 콘크리트 트리플 리브 슬래브의 휨성능)

  • Hwang, Seung-bum;Seo, Soo-yeon;Lee, Kang-cheol;Lee, Seok-hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.3-11
    • /
    • 2016
  • The concern about hollow core PC slab has been increased to improve the workability during a construction of building by reducing self weight of structural members. In this manner, recently, TRS (Tripple Ribs Slab) was developed as a new type of half PC slab system. TRS member consists of the triple webs and the bottom flange prestressed by strands. The slab system is completed by casting of topping concrete on the TRS after filling styrofoam between the webs. This paper, presents a flexural experiment to investigate the flexural capacity of the TRS. Five full scale TRS members were made and tested under simple support condition to be failed by flexure and their strength was evaluated by code equations; the variables in the test are the depth and the presence of topping or raised spot formed when slip-forming. In addition, a nonlinear sectional analysis was performed for the specimens and the result was compared with the test results. From the study, it was found that the TRS has enough flexural strength and ductility to resist the design loads and its strength can be suitably predicted by using code equations. The raised spot did not affect the strength so that the spot need not to be removed by doing additional work. For the more accurate prediction of TRS's flexural behavior by using nonlinear sectional analysis, it is recommended to consider the concrete's brittle property due to slip-forming process in the modeling.

Evaluation of Structural Performance of Precast Prestressed Hollow-Core Slabs with Shear Reinforcement (전단철근이 배치된 프리캐스트 프리스트레스트 중공슬래브의 구조성능 평가)

  • Sang-Yoon Kim;Seon-Hoon Kim;Deuck-Hang Lee;Sun-Jin Han;Kil-Hee Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.71-77
    • /
    • 2023
  • This study aims to investigate the structural performance of hollow-core slab (HCS) memebers with 400 mm thickness. To this end, a total of four HCS specimens were fabricated based on the individual mold method to provide shear reinforcement, unlike the extrusion method. The key variables were chosen as the presence of topping concrete, core-filling concrete, and shear reinforcements. The crack patterns and load-displacement responses of the test specimens were analyzed in detail. Test results showed that inclined shear cracking occurred all the specimens, and that the specimen with shear reinforcement on the web of HCS unit had higher strength and ductility than the specimen without shear reinforcement. In particular, shear reinforcements placed on the web of HCS unit effectively resisted not only to vertical shear force but also to horizontal shear force between the interface of HCS unit and topping concrete. In addition, it was discovered that the method in which shear reinforcements are placed on the web of HCS unit is more effective in improving structural performance than core-filling method.

Modelling headed stud shear connectors of steel-concrete pushout tests with PCHCS and concrete topping

  • Lucas Mognon Santiago Prates;Felipe Piana Vendramell Ferreira;Alexandre Rossi;Carlos Humberto Martins
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.451-469
    • /
    • 2023
  • The use of precast hollow-core slabs (PCHCS) in civil construction has been increasing due to the speed of execution and reduction in the weight of flooring systems. However, in the literature there are no studies that present a finite element model (FEM) to predict the load-slip relationship behavior of pushout tests, considering headed stud shear connector and PCHCS placed at the upper flange of the downstand steel profile. Thus, the present paper aims to develop a FEM, which is based on tests to fill this gap. For this task, geometrical non-linear analyses are carried out in the ABAQUS software. The FEM is calibrated by sensitivity analyses, considering different types of analysis, the friction coefficient at the steel-concrete interface, as well as the constitutive model of the headed stud shear connector. Subsequently, a parametric study is performed to assess the influence of the number of connector lines, type of filling and height of the PCHCS. The results are compared with analytical models that predict the headed stud resistance. In total, 158 finite element models are processed. It was concluded that the dynamic implicit analysis (quasi-static) showed better convergence of the equilibrium trajectory when compared to the static analysis, such as arc-length method. The friction coefficient value of 0.5 was indicated to predict the load-slip relationship behavior of all models investigated. The headed stud shear connector rupture was verified for the constitutive model capable of representing the fracture in the stress-strain relationship. Regarding the number of connector lines, there was an average increase of 108% in the resistance of the structure for models with two lines of connectors compared to the use of only one. The type of filling of the hollow core slab that presented the best results was the partial filling. Finally, the greater the height of the PCHCS, the greater the resistance of the headed stud.

The Design of long cantilever beam using post-tensioned tendons in Kumjung Stadium (포스트텐션을 이용한 장스팬 켄틸레버보의 설계)

  • 최동섭;김동환;김종수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.619-624
    • /
    • 2002
  • A prestressed/precast concrete system was used to build the new Asian Olympic Stadium Project in Pusan, Korea. The stadium(mainly intended for cycle racing) is designed for the 2002 Asian Olympic Games and has a seating capacity of 20,000 spectators plus a few private suites. More than 1300 prestressed/precast components were used and they include single columns, primary beams, cantilever beams, double riser stands, and double tees. Especially, a total of 24 cantilever beams is used on the fourth story for the stands and double tees. These 8m long beams are post-tensioned to prevent cracking, to increase their durability and to serve serviceability by vibration. A cantilever section with cast-in-place topping is 800mm wide and 1500mm deep. Cantilever beams are connected to the column with the corbel by cast-in place concrete. Bonded post-tensioning tendons were assembled at the job site. Dead-end anchorages were installed in the end of cantilever beams and live-end anchorage is the opposite of them. This article presents the geometric layouts, design features and so on.

  • PDF

Effect of Different Interfacial Shear Reinforcement Lengths and Types on Flexural Behavior of PC/PS-Half Slab (계면 전단 보강근 길이 및 형태 변화에 따른 PC/PS-Half Slab의 휨 거동)

  • 이차돈;이종민
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.131-138
    • /
    • 2001
  • Total number of seven experimental specimens of size 4.6m$\times$2.4m are designed in full scale with due considerations given to the constructability as well as economic applications. Each specimen is made with different shapes of trusses or hooks along the interfacial surface between precast panel and topping concrete to maintain appropriate shear resistance. Structural performances in terms of strength and ductility under flexural load are examined for each specimen with different types of interfacial shear resistance reinforcements. Experimentally obtained flexural strength are also compared with those of analytical predictions. Based on experimental and analytical studies, design equations are suggested for the developed precast prestressed concrete half-slab systems.

  • PDF

Consideration of the Design Methods for Underground HCS System (지하층 HCS 구조시스템의 거동에 따른 설계방법의 고찰)

  • Kim Hye-Min;Kim Seung-Hun;Kim Jong-Soo;Lee Li-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.56-59
    • /
    • 2004
  • This paper presents the consideration of design guideline for underground HCS system, composite spancrete slab, under axial and bending force. Serviceability design requirements for continuous composite spancrete slab subjected axial force, which are allowable stress and deflection, are compared. Flexural strengths are evaluated by design guideline using strain-compatibility method. The results showed that stresses of spancrete and topping concrete, especially at the ends of beam, have much effect on design loads. Maximum service loads for tested specimens are proposed by allowable stress.

  • PDF