• 제목/요약/키워드: topic modelling analysis

검색결과 40건 처리시간 0.023초

A Research on Difference Between Consumer Perception of Slow Fashion and Consumption Behavior of Fast Fashion: Application of Topic Modelling with Big Data

  • YANG, Oh-Suk;WOO, Young-Mok;YANG, Yae-Rim
    • 융합경영연구
    • /
    • 제9권1호
    • /
    • pp.1-14
    • /
    • 2021
  • Purpose: The article deals with the proposition that consumers' fashion consumption behavior will still follow the consumption behavior of fast fashion, despite recognizing the importance of slow fashion. Research design, data and methodology: The research model to verify this proposition is topic modelling with big data including unstructured textual data. we combined 5,506 news articles posted on Naver news search platform during the 2003-2019 period about fast fashion and slow fashion, high-frequency words have been derived, and topics have been found using LDA model. Based on these, we examined consumers' perception and consumption behavior on slow fashion through the analysis of Topic Network. Results: (1) Looking at the status of annual article collection, consumers' interest in slow fashion mainly began in 2005 and showed a steady increase up to 2019. (2) Term Frequency analysis showed that the keywords for slow fashion are the lowest, with consumers' consumption patterns continuing around 'brand.' (3) Each topic's weight in articles showed that 'social value' - which includes slow fashion - ranked sixth among the 9 topics, low linkage with other topics. (4) Lastly, 'brand' and 'fashion trend' were key topics, and the topic 'social value' accounted for a low proportion. Conclusion: Slow fashion was not a considerable factor of consumption behavior. Consumption patterns in fashion sector are still dominated by general consumption patterns centered on brands and fast fashion.

언택트 연구의 지식구조에 대한 탐색적 분석 (A Exploratory Analysis on Knowledge Structure of Untact Research)

  • 김성묵;차현희
    • 문화기술의 융합
    • /
    • 제7권2호
    • /
    • pp.367-375
    • /
    • 2021
  • 본 연구는 텍스트 마이닝을 이용하여 언택트 연구의 지식구조를 파악하고 연구 방향 정립을 위한 함의를 찾고자 하였다. 2019년부터 2020년 10월까지 발표된 연구 문헌 171편의 서지정보를 네트워크 분석과 토픽 모델링 기법을 사용, 분석하였다. 사용, 서비스, 소비, 영향, 기술 키워드 등의 등장 빈도가 높았고, 등장논문의 수는 코로나19, 기술, 사용, 서비스의 순서였다. 중심성과 구조적 공백 분석 결과 서비스, 사용, 소비, 기술, 온라인 등의 키워드를 중심으로 연구가 이루어졌고, 더 연구가 필요함을 확인하였다. 토픽 모델링으로 코로나19와 사회기술변화, 교육콘텐츠 필요성 및 활용, 사용자 편의 기술 및 서비스, 제품 마케팅 및 판매, 기업의 서비스 디자인, 사용과 소비 영향요인 등 6개 토픽을 추출하였고 토픽을 잇는 키워드는 기술, 서비스, 사용, 소비, 필요, 요인 등이었다. 지식구조 분석은 언택트 연구와 정책 제안에 유용한 정보를 제공할 수 있다. 본 연구의 탐색적 성격을 넘어 양적 축적과 질적 다변화가 필요하다.

평판구조 결합부의 동적 모델링에 관한 연구 (A Study on Dynamic Modelling of Joints in Plate Structure)

  • 이장무;이재운;성명호
    • 소음진동
    • /
    • 제2권1호
    • /
    • pp.61-66
    • /
    • 1992
  • In general, structures have various joints such as bonded joint, bolted joint, bearing joint and welded joint. Dynamic modelling of such joints has been the current topic of interest. In this study, the dynamic modelling of plate structures with bonded joint was investigated by using modal testing, sensitivity analysis and condensation-inverse condensation method of FEM. A proper modelling procedure was proposed and the validity was verified.

  • PDF

공유숙박업에서 고객 충성도에 영향을 미치는 요인: 구조 방정식 모형과 토픽 모델링 분석 (Antecedents of Customer Loyalty in the Context of Sharing Accommodation: Analysis of Structural Equation Modelling and Topic Modelling)

  • 김선주;김병수
    • 지식경영연구
    • /
    • 제22권3호
    • /
    • pp.55-73
    • /
    • 2021
  • 공유 경제는 쓰지 않은 자원을 다른 사람들과 나누어 쓰는 협력적 소비로 인식되고 있다. 본 연구에서는 공유 숙박업 이용 고객들의 충성도에 영향을 미치는 요인들을 살펴보고자 하였다. 고객들이 공유 숙박업 경험에서 느낀 감정과 자아 이미지 일치성, 인지된 가치를 고객 충성도에 영향을 주는 선행요인으로 고려하였다. 그리고 진정한 경험, 숙소 시설, 가격 공정성을 공유 숙박업의 선택속성으로 고려하였다. Airbnb가 공유 숙박업에서 가장 큰 업체이기 때문에 설문 대상으로 선정하였다. 294명의 Airbnb 이용 고객 데이터를 바탕으로 구조 방정식 모형을 활용하여 요인들 간 관계를 분석하였다. 또한, Airbnb를 이용한 고객이 작성한 리뷰를 통해 고객이 어떤 사항을 중요하게 고려하였는지 살펴보았다. 이를 위해 네이버 블로그에서 Airbnb 리뷰를 수집하여 LDA기반 토픽모델링을 실시하였다. 본 연구 결과를 통해 공유 숙박업에 대한 고객들의 충성도에 영향을 미치는 요인들에 대한 이해를 바탕으로, 효과적인 마케팅 전략과 운영 관리 전략을 수립하는데 도움을 줄 수 있을 것으로 기대된다.

Analyzing the Major Issues of the 4th Industrial Revolution

  • Jeon, Jeonghwan;Suh, Yongyoon
    • Asian Journal of Innovation and Policy
    • /
    • 제6권3호
    • /
    • pp.262-273
    • /
    • 2017
  • Recently, the attention to the $4^{th}$ Industrial Revolution has been increasing. In the $4^{th}$ Industrial Revolution era, the boundaries between physical space, digital space, and biological space are becoming blurred because of the active convergence between various fields. There are many issues about the $4^{th}$ Industrial Revolution such as artificial intelligence, Internet of things, big data, and cyber physical system. To cope with the $4^{th}$ Industrial Revolution, an accurate analysis and technology planning need to be undertaken from a broad point of view. However, there is little research on the analysis of the major issues about the 4th Industrial Revolution. Accordingly, this study aims to analyse these major issues. Data mining such as topic modelling method is used for this analysis. This study is expected to be helpful for the researcher and policy maker of the 4th Industrial Revolution.

텍스트 마이닝을 이용한 리빙랩 연구동향 분석 (Research Trend Analysis on Living Lab Using Text Mining)

  • 김성묵;김영준
    • 디지털융복합연구
    • /
    • 제18권8호
    • /
    • pp.37-48
    • /
    • 2020
  • 본 연구는 텍스트 마이닝을 활용하여 리빙랩 연구의 동향을 파악하고 연구 방향 정립에 필요한 함의를 도출하고자 하였다. 리빙랩 관련 연구가 발표되기 시작한 2011년부터 2019년 11월까지의 논문 166편의 키워드와 초록을 대상으로 네트워크 분석 및 토픽 모델링 기법을 사용하여 분석하였다. 키워드 중 혁신, 지역, 사회, 기술, 스마트시티 등의 출현빈도가 높았고, 중심도 분석결과 현재까지 리빙랩 연구가 혁신, 사회, 기술, 개발, 사용자 등의 키워드를 중심으로 이루어짐을 파악하였다. 토픽 모델링 결과 지역혁신과 사용자지원, 정부 사회정책사업, 스마트시티 플랫폼구축, 기업기술혁신모델 및 시스템전환 참여 등 5개 토픽을 추출하였으며 토픽을 이어주는 키워드는 혁신, 기술, 사용자, 참여인것으로 분석하였다. 2017년 KNoLL 출범 후 토픽별 비중은 고른 분포로 연구 주제가 다양화됨을 확인하였다. 텍스트마이닝을 이용한 리빙랩 연구동향 분석과 방향 제시는 연구와 정책방향 수립에 유용한 자료를 제공할 수 있다.

토픽모델링 기반의 학교폭력 사례 유형 연구 (A Study on the Categorizes of School Bullying through Topic Modelling Method)

  • 신승기
    • 한국정보교육학회:학술대회논문집
    • /
    • 한국정보교육학회 2021년도 학술논문집
    • /
    • pp.181-185
    • /
    • 2021
  • 본 연구는 학교현장에서 지속적으로 강조되고 있는 학교폭력 예방을 위한 방안을 도출하기 위한 노력의 일환으로 최근의 학교폭력 관련 이슈화되고 있는 주제를 데이터과학의 관점으로 살펴보고자 하였다. 특히, 온라인 SNS데이터를 활용하여 학교폭력 관련 게시물을 크롤링하고 토픽모델링 방법을 활용하여 유형별 특징을 살펴보고자 하였다. 토픽모델링 분석을 통해 도출된 주제별 키워드를 유형별로 정리한 결과를 통해 대체로 학교폭력의 피해 예방과 가해자 처벌 및 조치사안에 대한 내용으로 크게 3가지의 내용으로 구분할 수 있었다. 첫째, 학교폭력 예방활동에 대한 내용으로서 학교폭력예방을 위한 전문 기구들의 역할에 대한 내용이다. 둘째, 학교폭력에 대한 조치사항과 절차에 대한 내용으로 도출되었다. 셋째, 학교폭력의 최근 현안에 대한 내용에 대해서 살펴볼 수 있었다. 추후 연구에서는 데이터기반의 예측을 기반으로 당면하고 있는 사회적 문제해결에 활용하는 연구가 수행될 필요가 있다.

  • PDF

의학교육에서 기계학습방법 교육: 석면 언론 프레임 연구사례를 중심으로 (Machine Learning Method in Medical Education: Focusing on Research Case of Press Frame on Asbestos)

  • 김준혁;허소윤;강신익;김건일;강동묵
    • 의학교육논단
    • /
    • 제19권3호
    • /
    • pp.158-168
    • /
    • 2017
  • There is a more urgent call for educational methods of machine learning in medical education, and therefore, new approaches of teaching and researching machine learning in medicine are needed. This paper presents a case using machine learning through text analysis. Topic modeling of news articles with the keyword 'asbestos' were examined. Two hypotheses were tested using this method, and the process of machine learning of texts is illustrated through this example. Using an automated text analysis method, all the news articles published from January 1, 1990 to November 15, 2016 in South Korea which included 'asbestos' in the title and the body were collected by web scraping. Differences in topics were analyzed by structured topic modelling (STM) and compared by press companies and periods. More articles were found in liberal media outlets. Differences were found in the number and types of topics in the articles according to the partisanship and period. STM showed that the conservative press views asbestos as a personal problem, while the progressive press views asbestos as a social problem. A divergence in the perspective for emphasizing the issues of asbestos between the conservative press and progressive press was also found. Social perspective influences the main topics of news stories. Thus, the patients' uneasiness and pain are not presented by both sources of media. In addition, topics differ between news media sources based on partisanship, and therefore cause divergence in readers' framing. The method of text analysis and its strengths and weaknesses are explained, and an application for the teaching and researching of machine learning in medical education using the methodology of text analysis is considered. An educational method of machine learning in medical education is urgent for future generations.

Stock Forecasting Using Prophet vs. LSTM Model Applying Time-Series Prediction

  • Alshara, Mohammed Ali
    • International Journal of Computer Science & Network Security
    • /
    • 제22권2호
    • /
    • pp.185-192
    • /
    • 2022
  • Forecasting and time series modelling plays a vital role in the data analysis process. Time Series is widely used in analytics & data science. Forecasting stock prices is a popular and important topic in financial and academic studies. A stock market is an unregulated place for forecasting due to the absence of essential rules for estimating or predicting a stock price in the stock market. Therefore, predicting stock prices is a time-series problem and challenging. Machine learning has many methods and applications instrumental in implementing stock price forecasting, such as technical analysis, fundamental analysis, time series analysis, statistical analysis. This paper will discuss implementing the stock price, forecasting, and research using prophet and LSTM models. This process and task are very complex and involve uncertainty. Although the stock price never is predicted due to its ambiguous field, this paper aims to apply the concept of forecasting and data analysis to predict stocks.

멸종위기 야생생물 민원 텍스트 마이닝 연구 - LDA 토픽 모델링과 네트워크 분석을 통한 주요 이슈 발굴 - (A Text Mining Study on Endangered Wildlife Complaints - Discovery of Key Issues through LDA Topic Modeling and Network Analysis -)

  • 김나영;남희정;박용수
    • 한국환경복원기술학회지
    • /
    • 제26권6호
    • /
    • pp.205-220
    • /
    • 2023
  • This study aimed to analyze the needs and interests of the public on endangered wildlife using complaint big data. We collected 1,203 complaints and their corresponding text data on endangered wildlife, pre-processed them, and constructed a document-term matrix for 1,739 text data. We performed LDA (Latent Dirichlet Allocation) topic modeling and network analysis. The results revealed that the complaints on endangered wildlife peaked in June-August, and the interest shifted from insects to various endangered wildlife in the living area, such as mammals, birds, and amphibians. In addition, the complaints on endangered wildlife could be categorized into 8 topics and 5 clusters, such as discovery report, habitat protection and response request, information inquiry, investigation and action request, and consultation request. The co-occurrence network analysis for each topic showed that the keywords reflecting the call center reporting procedure, such as photo, send, and take, had high centrality in common, and other keywords such as dung beetle, know, absence and think played an important role in the network. Through this analysis, we identified the main keywords and their relationships within each topic and derived the main issues for each topic. This study confirmed the increasing and diversifying public interest and complaints on endangered wildlife and highlighted the need for professional response. We also suggested developing and extending participatory conservation plans that align with the public's preferences and demands. This study demonstrated the feasibility of using complaint big data on endangered wildlife and its implications for policy decision-making and public promotion on endangered wildlife.