• 제목/요약/키워드: top-to-bottom compression strength

검색결과 18건 처리시간 0.026초

Experimental Investigation for Flexural Stiffness of Paperboard-stacked Structure

  • Lee, Myung-Hoon;Park, Jong-Min
    • 한국포장학회지
    • /
    • 제7권1호
    • /
    • pp.9-15
    • /
    • 2001
  • Top-to-bottom compression strength of corrugated fiberboard boxes is partly dependent on the load-carrying ability of the central panel areas. The ability of these central areas to resist bending under load will increase the stacking strength of the box. The difference of box compression strengths, among boxes which are made with identical dimensions and fabricated with same components but different flute sizes, is primarily due to difference of the flexural stiffness of the box panels. Top-to-bottom compression strength of a box is accurately predicted by flexural stiffness measurements and the edge crush test of the combined boards. This study was carried out to analyze the flexural stiffness, maximum bending force and maximum deflection for various corrugated fiberboards by experimental investigation. There were significant differences between the machine direction (MD) and the cross-machine direction (CD) of corrugated fiberboards tested. It was about 50% in SW and DW, and $62%{\sim}74%$ in dual-medium corrugated fiberboards(e.g. DM, DMA and DMB), respectively. There were no significant differences of maximum deflection in machine direction among the tested fiberboards but, in cross direction, DM showed the highest value and followed by SW, DMA, DMB and DW in order. For the corrugated fiberboards tested, flexural stiffness in machine direction is about $29%{\sim}48%$ larger than cross direction, and difference of flexural stiffness between the two direction is the lowest in DMA and DMB.

  • PDF

산화전분 코팅에 의한 골판지 상자의 물성 변화 (Effect of Coating of Liner Components with Oxidized Starch on Properties of Corrugated Box)

  • 안병국;안원영
    • 펄프종이기술
    • /
    • 제31권3호
    • /
    • pp.47-53
    • /
    • 1999
  • The effect of coating of liner components with oxidized starch on the properties of corrugated box was examined . Coating was carried out on liner components of B flute, single-wall corrugated board(SK180/S120/K200) , and corrugated box was made from the treated corrugated board. Box was made in a regular slotted container (RSC) style, and box compression strength was determined in the direction of top-to-bottom compression. The compression strength of box coated on outside liner component showed 15.4% improvement for 1.58g㎡ coating. On the other hand, the strength of box coated on outside liner component showed only 1.45% improvement for 1.41g/㎡ coating and 3.46% improvement for 2.32g/㎡ coating. Coating on inside liner component with oxidized starch at low coating weight more significantly improved box compression strength than coating on outside liner component, and the improvement was marked at the coating weight of 1.5-2.5g/㎡. In estimating top-to-bottom box compression strength, the experimental values were closer to the calculated values from McKee's equation suing edgewise compression strength of the combined board measured by column crush test than those from Kellicutt's equation using compression strength of component paperboards measured by ring crush test.

  • PDF

종이성형구조물의 휨강성에 대한 실험적 연구 (Experimental Investigation for Flexural Stiffness of Paperboard-stacked Structure)

  • 박종민;이명훈
    • 한국포장학회지
    • /
    • 제5권2호
    • /
    • pp.17-23
    • /
    • 1999
  • Top-to-bottom compression strength of corrugated fiberboard boxes is partly dependent on the load-carrying ability of the central panel areas. The ability of these central areas to resist bending under load will increase the stacking strength of the box. The difference of box compression strengths, among boxes which are made with identical dimensions and fabricated with same components but different flute sizes, is primarily due to difference of the flexural stiffness of the box panels. Top-to-bottom compression strength of a box is accurately predicted by flexural stiffness measurements and the edge crush test of the combined boards. This study was rallied out to analyze the flexural stiffness, maximum bending force and maximum deflection for various corrugated fiber-boards by experimental investigation. There were significant differences between the machine direction (MD) and the cross-machine direction (CD) of corrugated fiberboards tested. It was about 50% in SW and DW, and $62%{\sim}74%$ in dual-medium corrugated fiberboards(e.g. DM, DMA and DMB), respectively. There were no significant differences of maximum deflection in machine direction among the tested fiberboards but, in cross direction, DM showed the highest value and followed by SW, DMA, DMB and DW in order. For the corrugated fiberboards tested, flexural stiffness in machine direction is about $29%{\sim}48%$ larger than cross direction, and difference of flexural stiffness between the two direction is the lowest in DMA and DMB.

  • PDF

Cyclic test for beam-to-column abnormal joints in steel moment-resisting frames

  • Liu, Zu Q.;Xue, Jian Y.;Peng, Xiu N.;Gao, Liang
    • Steel and Composite Structures
    • /
    • 제18권5호
    • /
    • pp.1177-1195
    • /
    • 2015
  • Six specimens are tested to investigate the cyclic behavior of beam-to-column abnormal joints in steel moment-resisting frames, which are designed according to the principle of strong-member and weak-panel zone. Key parameters include the axial compression ratio of column and the section depth ratio of beams. Experimental results indicate that four types of failure patterns occurred during the loading process. The $P-{\Delta}$ hysteretic loops are stable and plentiful, but have different changing tendency at the positive and negative direction in the later of loading process due to mechanical behaviors of specimens. The ultimate strength tends to increase with the decrease of the section depth ratio of beams, but it is not apparent relationship to the axial compression ratio of column, which is less than 0.5. The top panel zone has good deformation capacity and the shear rotation can reach to 0.04 rad. The top panel zone and the bottom panel zone don't work as a whole. Based on the experimental results, the equation for shear strength of the abnormal joint panel zone is established by considering the restriction of the bottom panel zone to the top panel zone, which is suitable for the abnormal joint of H-shaped or box column and beams with different depths.

Study of cracks in compressed concrete specimens with a notch and two neighboring holes

  • Vahab, Sarfarazi;Kaveh, Asgari;Shirin, Jahanmiri;Mohammad Fatehi, Marji;Alireza Mohammadi, Khachakini
    • Advances in concrete construction
    • /
    • 제14권5호
    • /
    • pp.317-330
    • /
    • 2022
  • This paper investigated computationally and experimentally the interaction here between a notch as well as a micropore under uniaxial compression. Brazilian tensile strength, uniaxial tensile strength, as well as biaxial tensile strength are used to calibrate PFC2d at first. Then, uniaxial compression test was conducted which they included internal notch and micro pore. Experimental and numerical building of 9 models including notch and micro pore were conducted. Model dimensions of models are 10 cm × 10 cm × 5 cm. Joint length was 2 cm. Joints angles were 30°, 45° and 60°. The position of micro pore for all joint angles was 2cm upper than top of the joint, 2 cm upper than middle of joint and 2 cm upper than the joint lower tip, discreetly. The numerical model's dimensions were 5.4 cm × 10.8 cm. The fractures were 2 cm in length and had angularities of 30, 45, and 60 degrees. The pore had a diameter of 1 cm and was located at the top of the notch, 2 cm above the top, 2 cm above the middle, and 2 cm above the bottom tip of the joint. The uniaxial compression strength of the model material was 10 MPa. The local damping ratio was 0.7. At 0.016 mm per second, it loaded. The results show that failure pattern affects uniaxial compressive strength whereas notch orientation and pore condition impact failure pattern. From the notch tips, a two-wing fracture spreads almost parallel to the usual load until it unites with the sample edge. Additionally, two wing fractures start at the hole. Both of these cracks join the sample edge and one of them joins the notch. The number of wing cracks increased as the joint angle rose. There aren't many AE effects in the early phases of loading, but they quickly build up until the applied stress reaches its maximum. Each stress decrease was also followed by several AE effects. By raising the joint angularities from 30° to 60°, uniaxial strength was reduced. The failure strengths in both the numerical simulation and the actual test are quite similar.

Performance of cold-formed steel wall frames under compression

  • Pan, Chi-Ling;Peng, Jui-Lin
    • Steel and Composite Structures
    • /
    • 제5권5호
    • /
    • pp.407-420
    • /
    • 2005
  • This study presents the strength of braced and unbraced cold-formed steel wall frames consisting of several wall studs acting as columns, top and bottom tracks, and bracing members. The strength and the buckling mode of steel wall frames were found to be different due to the change of bracing type. In addition, the spacing of wall studs is a crucial factor to the strength of steel wall frames. The comparisons were made between the test results and the predictions computed based on AISI Code. The related specifications do not clearly provides the effective length factors for the member of cold-formed steel frame under compression. This paper proposes effective length factors for the steel wall frames based on the test results. A theoretical model is also derived to obtain the modulus of elastic support provided by the bracing at mid-height of steel wall frames in this research.

역타공법에 적용되는 팔각 콘크리트충전 강관의 압축성능을 위한 원심모형실험 (Centrifuge Tests on Compression Performance of Octagonal Concrete Filled Tube Column to be applied to Top-Down Construction Method)

  • 김동관;이승환
    • 한국산학기술학회논문지
    • /
    • 제18권7호
    • /
    • pp.9-16
    • /
    • 2017
  • 콘크리트 충전 강관 기둥을 개선한 팔각 콘크리트 충전 강관 기둥 (OCFT 기둥)이 개발되었다. 본 연구에서는 시공성 및 경제성 측면에서 장점을 갖는 OCFT 기둥을 역타(Top-Down) 공법에 적용하기 위하여 원심모형실험 장비를 활용하여 압축성능을 검증하였다. 12 g의 원심가속도가 작용하는 상태에서 말뚝으로 시공된 OCFT 기둥의 시공하중에 대한 지지가능 여부와 토사가 굴토되었을 경우 말뚝의 좌굴안전성 등을 관찰하기 위하여 압축강도에 대한 실험을 수행하였다. 천공 후, OCFT 기둥과 H 형강이 말뚝기초로 시공되고 뒷채움으로, 지반에 완전히 묻힌 실험체의 경우와 반만 묻힌 경우에 대하여, 약 13,000 kN의 공칭강도의 45% 시공하중을 재하한 결과 모든 실험체가 탄성상태에서 거동하였다. 하중재하실험 종료 후, 풍화암과 말뚝하부를 관찰한 결과 풍화암이 손상되지 않았으며, 이로부터 3.5 MPa 조성된 풍화암은 $600{\times}600mm$ OCFT 기둥의 공칭강도의 45%도 안정적으로 지지할 수 있는 것으로 판단된다.

LRFD법에 의한 이중합성 박스거더 최대부모멘트 단면 휨 설계 (Flexural Design of Double Composite Box Girder over Interior Pier by LRFD Method)

  • 조은영;신동구
    • 한국강구조학회 논문집
    • /
    • 제19권6호
    • /
    • pp.737-749
    • /
    • 2007
  • LRFD 법을 이용하여 3경간 연속 이중합성 박스거더교의 부모멘트를 받는 내측 교각 위 단면을 설계하였다. 3경간 연속교의 최대경간은 80-120m를 고려하였으며 경간비는 1:1.25:1로 가정하였다. 설계 시에는 최대부모멘트를 받는 이중합성거더 단면의 강도한계상태, 사용성한계상태 및 시공성 검토를 고려하였다. 하부 보강콘크리트가 압축플랜지에 합성되기 전에는 압축플랜지의 좌굴을 검토하였으며 합성 후에는 좌굴이 방지된 것으로 가정하였다. 이중합성 박스거더의 하부플랜지 위에 타설하는 콘크리트의 두께에 따른 단면전체의 휨강성과 휨저항강도를 비롯하여 인장플랜지, 압축플랜지 및 복부판의 휨강도를 비교 분석하였다. 상부플랜지와 하부플랜지 단면적비가 이중합성 박스거더의 연성거동 및 휨응력 분포에 미치는 영향을 검토하고 적절한 단면적비를 분석하였다. 하부 보강콘크리트의 유무에 따른 소요 강재량을 비교한 결과, 이중합성 거더의 경우가 기존 단일합성 거더에 비해 15% 내외의 강재량 절감효과가 있는 것으로 분석되었다.

급속응고 Al-20 wt% Si 합금 분말의 ECAP를 통한 고형화 (Consolidation of Rapidly Solidified Al-20 wt% Si Alloy Powders Using Equal Channel Angular Pressing)

  • 윤승채;홍순직;서민홍;정영기;김형섭
    • 한국분말재료학회지
    • /
    • 제11권3호
    • /
    • pp.233-241
    • /
    • 2004
  • In this study, bottom-up type powder processing and top-down type SPD (severe plastic deformation) approaches were combined in order to achieve both full density and grain refinement of Al-20 wt% Si powders without grain growth, which was considered as a bottle neck of the bottom-up method using the conventional powder metallurgy of compaction and sintering. ECAP (Equal channel angular pressing), one of the most promising method in SPD, was used for the powder consolidation. The powder ECAP processing with 1, 2, 4 and 8 passes was conducted for 10$0^{\circ}C$ and 20$0^{\circ}C$ It was found by microhardness, compression tests and micro-structure characterization that high mechanical strength could be achieved effectively as a result of the well bonded powder contact surface during ECAP process. The SPD processing of powders is a viable method to achieve both fully density and nanostructured materials.

상용압연 형강과 콘크리트 합성거더의 다단계 긴장력 최적설계 (Optimal Tension Forces of Multi-step Prestressed Composite Girders Using Commercial Rolled Beams)

  • 정홍시;김영우;박재만;신영석
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.95-102
    • /
    • 2004
  • The 1st and 2nd tension forces of the PSSC(Prestressed Steel and Concrete) girder constructed with commercial rolling beams and concrete are optimally designed. The design variables are the 1st and 2nd tension forces due to multi-step prestressing and live load. The objective function is set to the maximum live load. Design conditions are allowable stress at the top and bottom of slab, beam and infilled concrete due to a construction step. An Optimization of Matlab based program Is developed. The results show that the tendon position and concrete compression strength etc are important.

  • PDF