• Title/Summary/Keyword: tool material

Search Result 1,956, Processing Time 0.035 seconds

Features Extraction of Tool Wear and its Detection using Neural Network (가공 재질에 따른 공구 마멸의 특성 추출과 신경회로망을 이용한 마멸 검출)

  • 이호영;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.89-94
    • /
    • 1995
  • A16061, SB41 and SM45C was used for developing tool wear monitoring system in face milling. First of all, Neural networks of which input are 8 $_{th}$ order AR morel parameters, frequency band energies, cutting conditions was used to monitor tool wear for each material. Finally, A unified neural network, which has tensile strengths of each material as an additional input, was constructed to consider the effect three materials on the features of tool wear. It was verified that tensile strength is the one of properties of workpiece materials.s.

  • PDF

Study on Formability Enhancement of Electromagnetic Forming using Gurson Plasticity Material Model (Gurson모델을 사용한 전자기성형의 성형성 개선에 대한 연구)

  • Kim, Jeong;Song, Woojin;Kang, Beomsoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.98-104
    • /
    • 2013
  • The effect of the tool-sheet interaction on formability enhancement in electromagnetic forming is investigated using FEM. A free bulging and a conical forming die with 0.7mm AL1050 sheet are used to evaluate damage evolution based on Gurson-Tvergaard-Needleman plasticity material model. The impact between the tool and sheet results in complex stress states including compressive hydrostatic stresses, which leads to a suppression of void growth and restrain ascending void volume fraction of the sheet. Therefore, the damage suppression due to the tool-sheet interaction can be the main factor contributing to the increased formability in the electromagnetic forming process.

A Study on the Machining Characteristics of Ti-6Al-4V Alloy (Ti-6Al-4V 타이타늄 합금의 절삭특성에 관한 연구)

  • 김남용;고준빈;이동주
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.20-28
    • /
    • 2003
  • The machinability of Ti-6Al-4V titanium alloy and tool wear behavior in machining of Ti-6Al-4V titanium alloy was studied to understand the machining characteristics. This material is one of the strong candidate materials in present and future aerospace or medical applications. Recently, their usage has already been broaden to everyday's commercial applications such as golf club heads, finger rings and many decorative items. To anticipate the general use of this material and development of the titanium alloys in domestic facilities, the review and the study of the machining parameters for those alloys are necessary. This study is concentrated to the machining parameters of the Ti-6Al-4V alloy due to their dominant position in the production of titanium alloys.

A Study on the Cutting Characteristics and Analysis by a FEM in the Machining of Ti-6Al-4V alloy (Ti-6Al-4V 합금의 절삭특성과 FEM 해석 비교에 관한 연구)

  • 김남용;홍우표;이동주
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.6
    • /
    • pp.29-35
    • /
    • 2001
  • The cutting characteristics of Ti-6Al-4V alloy and total wear when machining Ti-6Al-4V alloy was studied to understand the machining characteristics. This material is one of the strong candidate materials present and future aerospace or met ical applications. Nowadays their usage has already been broaden to commercial applications such as golf club head, finger rings and many decorative items. Anticipating the general use of this material and development of the titanium alloy in domestic facilities, the review and the study of the machining parameters far those alloys are deemed necessary. This study is concentrated to the machining parameters of the Ti-6Al-4V alloy due to their dominant position in the production of tita mum alloys.

  • PDF

Wear Limit of Tool by the Shift and Failure of a Machining Process (절삭공정의 변이와 고장에 의한 가공공구의 마모한계)

  • 이도경
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.35
    • /
    • pp.9-16
    • /
    • 1995
  • The degeneration of tool in material removal processing machinery can be characterized by wear, deflection, chattering and any failure in tool or in the material In be processed. In the previous studies, first three of them are analyzed as a preventive maintenance strategy in quality control area. The last of them, any failure, is analyzed as a preventive maintenance strategy in reliability area. In this research, we propose a simple integrated mathematical model which minimizes the cost of machinery failures and producing defects. We determine the optimal wear limit of tool by considering the percent defects. cost, the preventive maintenance cost, and the corrective maintenance cost.

  • PDF

Cutting Performance of Ti-Al-Si-N Coated Endmill for High-Hardened materials by Hybrid Coating System (하이브리드 코팅에 의한 고경도 소재용 Ti-Al-Si-N코팅 엔드밀의 절삭성능평가)

  • 김경중;강명창;이득우;김정석;김광호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.89-94
    • /
    • 2003
  • Hard coatings are known to improve the performance of cutting tools in aggressive machining applications, such as high speed machining. New superhard Ti-Al-Si-W films, characterized by a nanocomposite nano-sized (Ti,Al,Si)N crystallites embedded in amorphous $Si_3 N_4$ matrix, could be successfully synthesized on WC-Co substrates by a hybrid coating system of arc ion plating(AIP) and sputtering method. The hardness of Ti-Al-Si-N film increased with incorporation of Si, and had the maximum value ~50 GPa at the Si content of 9 at.%, respectively. And the X-ray diffraction patterns of Ti-Al-Si-N films with various Si content is investigated. In this study, Ti-Al-Si-N coatings were applied to end-mill tools made of WC-Co material by a hybrid coating system. Cutting tests fir the high-hardened material (STD11,$H_R$)C62 and their performances in high speed cutting conditions were studied. Also, the tool wear and tool lift of Ti-Al-Si-N with various si(6, 9, 19) contents were measured.

  • PDF

Material Flow and Surface Expansion in Radial-Backward Extrusion (레이디얼 압출과 연계된 후방압출의 소재유동과 표면확장)

  • 고병두;최호준;장동환;황병복
    • Transactions of Materials Processing
    • /
    • v.12 no.3
    • /
    • pp.251-258
    • /
    • 2003
  • The paper deals with an analysis of an extrusion process with a divided material flow in a combined radial - backward extrusion. The paper discusses the influences of tool geometry such as punch nose angle, relative gap height, die comer radius on material flow and surface expansion into can and flange region. To analyze the process, numerical simulations by the FEM and experiment, an Al alloy as a model material have been performed. Based on the results, the influence of design parameters on the distribution of divided material flow and surface expansion are obtained.

Machinability Evaluation of Endmill Tool through Development of Ultra-fine Grain Grade Cemented Tungsten Carbide Material (초미립 초경소재 개발을 통한 엔드밀 공구의 성능 평가)

  • 김홍규;서정태;권동현;김정석;강명창
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.865-869
    • /
    • 1997
  • In recent years, there has been increasing demand of ultra-fine grain graded cemented tungsten carbide material with high hardness and toughness which is used as high speed cutting tool for development in semiconductor, electronics and die/mold industry, which bring into limelight high-precision, high-efficient machining of sculptured surfaces. This paper deals with the performance of variation in the ultra-fine grain graded cemented tungsten carbide material such as grain size, hardness and density varied according to the volume of added elements, Co or TaC, and he changing of mixing, sintering process. Also, the performance of developing material with uniformed grain size of 0.5${\mu}{\textrm}{m}$ is compared with other domestics' & foreign companies' with analyzing and cutting performance testing.

  • PDF

IMPROVEMENT OF TOOL LIFE IN COLD FORGING

  • Kim Soo Young;Yamanaka Masahito;Arima Tatsuo;Matsuda Toru
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.175-178
    • /
    • 2003
  • Tool life in cold forging is influenced by tool quality as well as forging conditions and quality of forging material. This paper presents some typical examples of tool life improvement in aspect of tool quality depending on tool design and tool manufacturing parameters. For the purpose of improving tool life, suggestions should be based on accurate understanding of tool operating conditions in cold forging process. FE simulation known as CAE is effective in order to make clear the conditions by some numerically calculated result.

  • PDF

A Study on the Machinability of High Strength Steel with Internally Cooled Cutting Tool (공구내부냉각에 의한 고장력합금강의 피삭성에 관한 연구)

  • 김정두
    • Tribology and Lubricants
    • /
    • v.5 no.1
    • /
    • pp.44-50
    • /
    • 1989
  • High strength steel is similar to carbon steel in its composition. This material is developed originally for special uses such as aerospace and automobile due to its high strength and shock-free property in spite of lightness. But the chemical attraction of high strength steel is serious, which includes comminution of formation, metalization and strengthening. Machining results in built-up edge between this material and the tool. Especially the work hardening behavior results in tool life shortening, which was caused by temperature generation during machining. In this study, cooling system was made in which liquid nitrogen is supplied to circulate in order to make up for these weaknesses. Machining of high strength steels, which is recognized as difficult to machine materials, was conducted after tool is cooled at -195$\circ$C. Experimental results showed that the tool was cooled down rapidly below -195$\circ$C in about 200 seconds. The tool temperature of machining with cooling system was lowered by 60~95$\circ$C than that of machining in room temperature. The hardness of the surface of chip is decreased by machining with cooling system. And the machining using the cooling system made it possible to increase shear angle, to retain smooth surface on chip without built-up-edge and to get a better roughness.