• Title/Summary/Keyword: tool geometry

Search Result 540, Processing Time 0.031 seconds

Statistical Characteristics of Fractal Dimension in Turbulent Prefixed Flame (난류 예혼합 화염에서의 프랙탈 차원의 통계적 특성)

  • Lee, Dae-Hun;Gwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.18-26
    • /
    • 2002
  • With the introduction of Fractal notation, various fields of engineering adopted fractal notation to express characteristics of geometry involved and one of the most frequently applied areas was turbulence. With research on turbulence regarding the surface as fractal geometry, attempts to analyze turbulent premised flame as fractal geometry also attracted attention as a tool for modeling, for the flame surface can be viewed as fractal geometry. Experiments focused on disclosure of flame characteristics by measuring fractal parameters were done by researchers. But robust principle or theory can't be extracted. Only reported modeling efforts using fractal dimension is flame speed model by Gouldin. This model gives good predictions of flame speed in unstrained case but not in highly strained flame condition. In this research, approaches regarding fractal dimension of flame as one representative value is pointed out as a reason for the absence of robust model. And as an extort to establish robust modeling, Presents methods treating fractal dimension as statistical variable. From this approach flame characteristics reported by experiments such as Da effect on flame structure can be seen quantitatively and shows possibility of flame modeling using fractal parameters with statistical method. From this result more quantitative model can be derived.

Comparison of Chord method with Surveying in Track irregularity Measurement (측량과 현방식 궤도틀림 측정 비교)

  • Lee, Jee-Ha;Lee, Sang-Jin
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1647-1652
    • /
    • 2008
  • Track geometry consists of tangent and curved lines, which caused undesirable changes in initial track geometry by traffic loads. The bigger the changes are, the worse the riding comfort and running stability of train. This is so-called track irregularity and is the most important quality parameters of ballasted track. To be able to objectively assess track irregularity, track geometry should be able to be measured. Practically, railway companies use moving chord method, this method determine versine values via a chord. The versine is the vertical distance to curve measured in the middle of the chord. This type of method measures only versine of track irregularity curve by transfer function from specific property of measuring tool. In this report, review the characteristics of two types of measuring tools by comparing the measurements. The one is GRP-1000 system, optical surveying system with Total station and lazar prism trolly. This calculates track geometry by surveying absolute coordinates of two points each on both rail heads. The other is Trackmaster, measures versine with 2m of chord length.

  • PDF

A Study on Real-time Control of Bead Height and Joint Tracking (비드 높이 및 조인트 추적의 실시간 제어 연구)

  • Lee, Jeong-Ick;Koh, Byung-Kab
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.71-78
    • /
    • 2007
  • There have been continuous efforts to automate welding processes. This automation process could be said to fall into two categories, weld seam tracking and weld quality evaluation. Recently, the attempts to achieve these two functions simultaneously are on the increase. For the study presented in this paper, a vision sensor is made, and using this, the 3 dimensional geometry of the bead is measured in real time. For the application in welding, which is the characteristic of nonlinear process, a fuzzy controller is designed. And with this, an adaptive control system is proposed which acquires the bead height and the coordinates of the point on the bead along the horizontal fillet joint, performs seam tracking with those data, and also at the same time, controls the bead geometry to a uniform shape. A communication system, which enables the communication with the industrial robot, is designed to control the bead geometry and to track the weld seam. Experiments are made with varied offset angles from the pre-taught weld path, and they showed the adaptive system works favorable results.

Two-dimensional fuel regression simulations with level set method for hybrid rocket internal ballistics

  • Funami, Yuki
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.4
    • /
    • pp.333-348
    • /
    • 2019
  • Low fuel regression rate is the main drawback of hybrid rocket which should be overcome. One of the improvement techniques to this problem is usage of a solid fuel grain with a complicated geometry port, which has been promoted owing to the recent development of additive manufacturing technologies. In the design of a hybrid rocket fuel grain with a complicated geometry port, the understanding of fuel regression behavior is very important. Numerical investigations of fuel regression behavior requires a capturing method of solid fuel surface, i.e. gas-solid interface. In this study, level set method is employed as such a method and the preliminary numerical tool for capturing a hybrid rocket solid fuel surface is developed. At first, to test the adequacy of the numerical modeling, the simulation results for circular port are compared to the experimental results in open literature. The regression rates and oxidizer to fuel ratios show good agreements between the simulations and the experiments, after passing enough time. However, during the early period of combustion, there are the discrepancies between the simulations and the experiments, owing to transient phenomena. Second, the simulations of complicated geometry ports are demonstrated. In this preliminary step, a star shape is employed as complicated geometry of port. The slot number effect in star port is investigated. The regression rate decreases with increasing the slot number, except for the star port with many slots (8 slots) in the latter half of combustion. The oxidizer to fuel ratio increases with increasing the slot number.

Geometric error compensation of machine tools by geometry redesign (형상 재 설계에 의한 공작기계 기하오차 보정)

  • 서성교
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.367-372
    • /
    • 2000
  • Accuracy of a machined component is determined by the relative motion between the cutting tool and the workpiece. One of the important factors which affects the accuracy of this relative motion is the geometric error of machine tools. In this study, geometric error is modeled using form shaping motion of machine tool, where a form shaping function is derived from the homogeneous transformation matrix. Geometric errors are measured by laser interferometer. After that, the local positioning error can be estimated from the form shaping model and geometric error data base. From this information, we can remodel the part by shifting the design surface to the amount of positional error. By generating tool path to the redesigned surface, we can reduce the machining error.

  • PDF

Cutting Characteristics of Ball-end Mill with Different Helix Angle (볼 엔드밀 헬릭스 각에 따른 절삭 특성)

  • Cho, Chul Yong;Ryu, Shi Hyoung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.5
    • /
    • pp.395-401
    • /
    • 2014
  • Development of five axis tool grinding machine and CAD/CAM systems increase tool design flexibility. In this research, investigated are cutting characteristics of ball-end mill with different helix angle. Special WC ball-end mills with $0^{\circ}$, $10^{\circ}$, $20^{\circ}$, $30^{\circ}$ helix angles are designed and used in various cutting tests. Machining performance according to helix angle variation is evaluated from cutting forces, surface roughness, tool wear, produced chip shape, and vibration characteristics. The ball-end mill with $10^{\circ}$ helix angle shows the best cutting performance due to appropriate chip load distribution and smooth chip flow. This research can be used for cutting edge geometry optimization and novel design of ball-end mill.

A Study on the Tool for Dynamic Analysis of the Test Support system using Wind Tunnel Testing (풍동시험에서 사용하는 시험지지부의 동특성 해석용 툴에 관한 연구)

  • Park Tae-Min;Lee Kee-Seok;Hong Jun-Hee
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.370-376
    • /
    • 2005
  • This paper is described the program algorithm which can easily estimate dynamics of test support system by using mathematica tool based on the finite element method. We can determine the geometry, dimensions of the test support system, through tool stated in this paper for a certain test conditions. As a result of computer simulation and manufactured test support system's experiment in oder to verify suggested program, the dynamics of the test support system was well correspondent each other.

  • PDF

Consideration of the Clearance According to the Wire Electrical Discharge Machining Conditions (와이어 방전가공에서 가공조건에 대한 방전갭 크기 고찰)

  • 이건범;최태준;이세현;손일복;이성용;한상희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.105-110
    • /
    • 1999
  • Wire electrical discharge machining (WEDM) is one of the unconventional machining processes, which is utilizing electrical energy to remove work-piece. In recent years WEDM used widely in die-sinking industry because WEDM can machine any hard materials if only it has conductivity and can machine accurately to the complex geometry, for fine wire is used in WEDM for the tool electrode. However WEDM is non-contact machining process, which is utilizing discharge phenomena occurring between two electrodes, the size of the machined part is larger than that of the tool electrode size. It is called discharge gap or clearance the difference size between the tool electrode and the machined part in WEDM. By the experiment clearances according to the machining condition was investigated.

  • PDF

PC Based STEP-NC Milling Machine Operated by STEP-NC in XML Format (XML형식의 STEP-NC파일로 구동되는 PC 기반의 STEP-NC milling machine)

  • 이원석;방영봉
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.185-193
    • /
    • 2002
  • Most of NC machines are operated by Is06983 standard called G-code, which was developed in the early days of machine tools. This G-code limits hardware performance of the currently developed high-performance hardware & machine tools. By describing only movements of tool, almost all of information of previous production departments is lost, and the machining department cannot exchange information with other departments. For adjusting new hardware environment and direct communication of CNC machines with CAD/CAM software, ISO 14649, STEP -NC is researched. This new standard stores CAD/CAM information as well as operation commands of CNC machines. In this research, the new CNC machine operated by STEP-NC was built and tested. Unlike other STEP-NC milling machines, this system uses the STEP-NC file in form of XML as data input. It makes possible for STEP-NC machines to exchange information to other databases using XML. The mentioned system of this paper loads the XML file, analyzes it, makes tool paths of two5D features with information of STEP-NC, and machines automatically without making G-code. All of software is programmed with Visual C++, and the milling machine is made with table milling machine, step motors, and motion control board for PC that can be directly controlled by C++ commands. All modules of software and hardware were independent, it allows convenient for substitution and expansion of the milling machine. The example 1 in ISP14649-11 that had all information about geometry and machining and the example 2 that has only geometry and tool information were used to test automatic machining by the open-architecture milling machine.

Gouging-free Tool-path Generation for Manufacturing Model Propellers (모형 프로펠러 제작을 위한 과절삭이 없는 공구 경로 생성)

  • Kim, Yoo-Chul;Kim, Tae-Wan;Suh, Jung-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.2 s.152
    • /
    • pp.198-209
    • /
    • 2007
  • In this paper, we present the gouging and collision-free tool-path generation for manufacturing model propellers using the 5-axis NC machine. Because it takes much time to generate tool-paths when we use general purpose CAD/CAM systems, a specific system would be necessary for marine propellers. Overall manufacturing process is composed of two steps: roughcut and finishcut steps. The roughcut is conducted using only 3-axis for efficient machining and the finishcut is done using 5-axis for avoiding collision. The tool-path that might happen to gouging is searched and the tool position is also decided for avoiding interference between the tool and the propeller blades. The present algorithm is applied extensively to the surface piercing propellers. Some results are demonstrated for its validation.