• 제목/요약/키워드: tool clamping force

검색결과 26건 처리시간 0.02초

소형 스핀들 시스템 적용을 위한 형상기억합금 기반 공구 클램핑 장치의 체결특성 고찰 (Investigation for Clamping Properties of the Tool Clamping Device Based on the Shape Memory Alloy for Application of a Micro Spindle System)

  • 신우철;노승국;박종권;이득우;정준모
    • 한국공작기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.9-14
    • /
    • 2007
  • In this paper, a rotating tool clamping device was developed based on a shape memory alloy(SMA) and its feasibility as a tool holder was experimentally explored. The SMA-based device was able to alter clamping to unclamping through temperature control within 1 second. The means and repeatability(${\sigma}$) of the tool clamping force were 185.5N and 6N respectively and its drifts were less than 3% for an hour. Considering the temperature hysteresis of the SMA-based tool clamping device, it is necessary to heat the SMA ring to around $50^{\circ}C$ after tool change to obtain more clamping force.

형상기억합금 기반 공구 클램핑 장치 설계 (Design of Tool Clamping Device Based on a Shape Memory Alloy)

  • 이동주;신우철;박형욱;노승국;박종권;정준모
    • 한국공작기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.70-75
    • /
    • 2008
  • This paper describes a tool-clamping/unclamping mechanism for application of a micro-spindle. The mechanism is based on one-way shape memory effect and interference-fit. The corresponding mathematical models and a few considerable design parameters are mentioned in this paper. Especially, necessary conditions for the clamping and unclamping operation are investigated through finite element analysis. The analysis results show that the differences between the diametral deformations of the tool holder in high temperature and that in low temperature are increased according to amounts of the interference. Thus the less interference between the tool-holder and the ring, the less tolerance to allow the clamping and unclamping operation because the inner diameter of the tool holder in high temperature should be smaller than the diameter of the tool shank, and that in low temperature should be larger than the diameter of the tool shank. In addition, the design for maximization of clamping force are investigated based on finite element analysis. The results show that the more amounts of the interference, the more clamping force. As the result, the interference should be considered as a important factor to maximize the tool clamping force.

형상기억합금을 이용한 회전공구 클램핑 장치 구현 (Implementation of the rotating tool clamping device using a shape memory alloy)

  • 정준모;박종권;이동주;신우철
    • 한국공작기계학회논문집
    • /
    • 제17권1호
    • /
    • pp.16-20
    • /
    • 2008
  • This paper presents the construction of micro tool clamping device using a Ni-Ti shape memory alloy(SMA) ring. Clamping force of the device is produced by elastic force of the SMA reverted to its original shape in normal temperature. Phase transformation of the SMA was realized by temperature control using a peltier element. Prototype of the SMA tool clamping device was fabricated and examined its clamping force and clamping/unclamping operation.

고정부 조건이 복합재료 공구용 바의 동적 특성에 미치는 영향 (Clamping effects on the dynamic characteristics of composite tool bars)

  • 황희윤;김병철;이대길
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.199-202
    • /
    • 2003
  • The dynamic characteristics of composite tool bars depend on the clamping conditions such as clamping force, stiffness and surface characteristics of clamping parts as well as the basic structures. Therefore, in this work, the effects of clamping part conditions on the dynamic characteristics of cantilever type composite machine tool structures with clamped joint were investigated because the cantilever type machine tool structures are ideal cases for composite application to increase the natural frequency and damping of structures. New design of the clamping part was developed in order to improve shear properties of the clamping part and dynamic characteristics of composite tool bars. From FE analysis and Impulse response tests, dynamic characteristics were obtained with respect to the clamping part conditions of the new design.

  • PDF

고속 주축에서 클램핑력 및 회전수 변화에 따른 주축 인터페이스 접촉률 변화에 관한 연구 (A Study on the Contact Interval in the Main Spindle Interface of High Speed Spindle according to Variation of Clamping Force and Rotational Speed)

  • 황영국;조영덕;이춘만;정원지
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1749-1752
    • /
    • 2005
  • High speed machining has become the main issue of metal cutting. Due to increase of the rotational speed of the spindle, problems, such as the run-out errors, reduced stiffness, must be overcome to improve the machining accuracy. In order to solve the problems, it is important to determine the appropriate clamping unit and tooling system. This paper presents an investigation into an evaluation of contact interval which is the interface between spindle taper hole and tool holder shank of the spindle. Finite element analysis is performed by using a commercial code ANSYS according to variation of clamping forces and rotational speeds. This paper proposed fit tolerance in order to evaluate the effects of clamping force and rotational speed on the contact interval in the spindle interface. From the finite element results, it has been shown that the rotational speed rather than clamping force mostly influence on the variation of the contact interval.

  • PDF

고속 주축에서 클램핑력 및 회전수 변화에 따른 주축 인터페이스 접촉률 변화에 관한 연구 (1) (A Study on the Contact Interval in the Main Spindle Interface of High Speed Spindle according to Variation of Clamping Force and Rotational Speed (1))

  • 황영국;정원지;이춘만
    • 한국정밀공학회지
    • /
    • 제23권3호
    • /
    • pp.147-155
    • /
    • 2006
  • High speed machining has become the main issue of metal rutting. Due to increase of the rotational speed of the spindle, problems, such as the run-out errors, reduced stiffness, must be overcome to improve the machining accuracy. In order to solve the problems, it is important to determine the appropriate clamping unit and tooling system. This paper presents an investigation into an evolution of contact interval which is the interface between spindle taper hole and tool holder shank of the spindle. Finite element analysis is performed by using a commercial code ANSYS according to variation of clamping forces and rotational speeds. This paper proposed fit tolerance in order to evaluate the effects of clamping force and rotational speed on the contact interval in the spindle interface. From the finite element results, it has been shown that the rotational speed rather than clamping force mostly influence on the variation of the contact interval.

유한요소법을 이용한 주축 인터페이스부의 정강성 특성 (Static Stiffness Characteristics of Main Spindle Interface using Finite Element Method)

  • 황영국;정원지;이춘만
    • 한국공작기계학회논문집
    • /
    • 제16권1호
    • /
    • pp.40-46
    • /
    • 2007
  • High speed machining has become the main issue of metal cutting. Due to increase of the rotational speed of the spindle, problems such as the run-out errors and reduced stiffness must be overcome to improve the machining accuracy. In order to solve the problems, it is important to determine the appropriate clamping unit and tooling system. This paper presents an investigation into an analysis of static stiffness in the main spindle interface. Finite element analysis is performed by using a commercial code ANSYS according to variation of cutting force, clamping force and rotational speed. From the finite element results, it is shown that the rotational speed and clamping force mostly influence on the variation of the static stiffness in the main spindle interface.

인치웜모터를 이용한 마이크로 프레스용 고정밀 구동기의 개발 (Development of High Precision Actuator for Micro Press System by Inchworm Motor)

  • 최종필;남권선;이해진;이낙규;김병희
    • 한국공작기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.137-143
    • /
    • 2009
  • This paper presents the fabrication of inchworm motor for high precision actuator system of large displacement and high force. The inchworm motor consists of a extend actuator that provides displacement of tool guide and two clamping actuators which provide the holding force. In order to avoid the PZT fracture, design of pre-load housing was conducted by flexure hinge structure, because PZT actuator has low tensile and shear. To design the pre-load housing and optimize the clamping mechanism, the static and dynamic analysis were conducted by finite element method. From these results, a prototype of the inchworm motor was fabricated and dynamic characteristic with respect to the various frequency was tested. The maximum velocity of the inchworm motor was $41.1{\mu}m/s$ at 16Hz.

형상기억합금을 이용한 열박음 공구홀더 개발 (Development of Shrink-Fit Tool Holder using Shape Memory Alloys)

  • 신우철;노승국;김병섭;박종권
    • 한국생산제조학회지
    • /
    • 제19권6호
    • /
    • pp.889-894
    • /
    • 2010
  • Conventional shrink-fit tool holders have positive features, such as high accuracy, high strength, high stiffness and low sensitivity to centrifugal forces, but they require heavy investments for heating and cooling equipment. Generally the heating equipment has to heat the tool holder up to $200{\sim}300^{\circ}C$ for tool changes. This paper introduces a novel shrink-fit tool holder that is able to unclamp a tool at $40{\sim}50^{\circ}C$. This feature makes it possible to switch between the clamped and unclamped states by using a simple device, which has lower power, smaller size and lower cost than the heating equipment of the conventional shrink-fit tool holders. The proposed shrink-fit tool holder is able to expand its tool hole by using the shape memory alloys which are integrated in the tool holder body. Performances of the SMA shrink-fit tool holder were evaluated experimentally. The experimental results confirm that the proposed tool holder is feasible in aspects of clamping/unclamping operations, clamping force and repeatability of tool setup.

전동렌치 전기에너지를 이용한 토크쉬어볼트의 체결축력 검사기법 개발 (Development of the Method for Inspecting the Clamping Force of Torque Shear Bolts Using the Electricity energy of Electric torque wrench)

  • 이현주;나환선;김강식;김강석
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제14권6호
    • /
    • pp.162-170
    • /
    • 2010
  • 토크쉬어볼트의 토크계수는 환경요인에 의해 영향을 받는다. 습기, 녹, 시공중의 작업성 등. 토크쉬어볼트의 토크계수의 변동에 기인하여 볼트에 도입된 축력을 예측하는 매우 어렵다. 이런 이유로 시공중인 볼트 축력을 측정하고, 체결력을 검증하는 것은 필수적이다. 이 연구에서, 볼트에 도입된 하중을 확인하기 위해 시작품 제작이 계획되었다. 시작품의 알고리즘은 토크쉬어 전동렌치에서 얻은 전기에너지와 유압축력기에서 얻은 축력과의 상관관계를 구성한 것이다. 직접축력을 계측하는 회귀분석식은 미니탭 프로그램을 이용한 통계학적인 분석방법에서 구한 것이다. 이 시작품은 상용 토크렌치에 견줄만한 인장력을 평가하는 신뢰성이 있는 도구라고 판단된다.