• Title/Summary/Keyword: tomato quality

Search Result 260, Processing Time 0.029 seconds

Probabilistic exposure assessment, a risk-based sampling plan and food safety performance evaluation of common vegetables (tomato and brinjal) in Bangladesh

  • Mazumder, Mohammad Nurun-Nabi;Bo, Aung Bo;Shin, Seung Chul;Jacxsens, Liesbeth;Akter, Tahmina;Bir, Md. Shahidul Haque;Aktar, Most Mohshina;Rahman, Md. Habibur;WeiQiang, Jia;Park, Kee Woong
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.1
    • /
    • pp.33-43
    • /
    • 2021
  • Along with the widespread use of pesticides in the world, concerns over human health impacts are rapidly growing. There is a large body of evidence on the relationship between the exposure to pesticides and the elevated rate of chronic diseases such as different types of cancers, diabetes, neurodegenerative disorders like Parkinson, Alzheimer, and amyotrophic lateral sclerosis (ALS), birth defects, and reproductive disorders. This research assessed the health risk of pesticide residues by the dietary intake of vegetables collected from the agro-based markets of Dhaka, Bangladesh. As some of the banned pesticides were also found in vegetable samples, they may pose a higher risk because of cheaper availability and hence the government of Bangladesh should take strong measures to control these banned pesticides. Five organo phosphorus (chlorpyrifos, parathion, ethion, acephate, fenthion) and two carbamate (carbaryl and carbofuran) pesticide residues were identified in twenty four samples of two common vegetables (tomato and brinjal). The pesticide residues ranged from below a detectable limit (< 0.01) to 0.36 mg·kg-1. Acephate, chlorpyrifos, ethion, and carbaryl were detected in only one sample, while co-occurrence occurred twice for parathion. Continuous monitoring and strict regulation should be enforced regarding the control of pesticide residues in fresh vegetables and other food commodities in Bangladesh.

Effect of Mixture Rate of Used Media and Perlite on Physico-Chemical of Properties Root Media and Seedling Quality in Fruit Vegetables Plug Nursery System (공정육묘시 재활용 상토에 신규상토 및 펄라이트의 혼합비율이 상토의 이화학적 특성과 과채류 묘소질에 미치는 영향)

  • Byun, Hyo-Jeung;Kim, Young Shik;Kang, Ho-Min;Kim, Il Seop
    • Journal of Bio-Environment Control
    • /
    • v.21 no.3
    • /
    • pp.213-219
    • /
    • 2012
  • Improving the physico-chemical properties of used media by mixing ratio of new plug media (NPM), used plug media (UPM) and perlite is necessary to improve seedling quality. In this study, five treatments were designed to investigate mixing ratio of UPM and NPM by ratio of volume 0 : 100, 25 : 75, 50 : 50, 75 : 25, 100 : 0, respectively. On the other hand, nine treatments were designed to investigate of perlite volumes were added to UPM and mixed media (UPM : NPM (50 : 50)) with 0, 5, 10, and 20% of ratio volume. The physicochemical properties of all mediums and their effect on growth response of tomato and cucumber seedlings were determined. The result indicates that physical properties was improved when NPM was mixed with UPM and at mixed ratio of volume 50 : 50 (v : v) has similar pore spare, bulk density and water retention to NPM. Seedling quality of tomato and cucumber in mixed media (50 : 50) are better than other mixed ratio and similar to NPM. Addition perlite to UPM and mixed media 50 : 50 (v : v) increased the pore space and water retention. Physical properties such as particle density, pore space and bulk density were increased when perlite volume increased. However, the best of seedling quality was observed by the addition at 10% volume of perlite. These results suggested that optimum of mixed ratio for recycled used media is new media and used media 1 : 1 mixed.

Improvement of Tomato Seedling Quality under Low Temperature by Application of Silicate Fertilizer (저온 저장 시 규산 처리에 의한 토마토 묘소질 향상)

  • Vu, Ngoc-Thang;Tran, Anh-Tuan;Le, Thi-Tuyet-Cham;Na, Jong-Kuk;Kim, Si-Hong;Park, Jong-Man;Jang, Dong-Cheol;Kim, Il-Seop
    • Journal of Bio-Environment Control
    • /
    • v.26 no.3
    • /
    • pp.158-166
    • /
    • 2017
  • The object of this study was to improve tomato seedling quality in low temperature(below 7, $10^{\circ}C$ during night time or daily mean air temperature was $18^{\circ}C$) by application of silicate fertilizer. Six different silicate fertilizer concentrations (8, 16, 32, 64, 128, and 256mM) or water as the control were applied to tomato seedlings twice a week for 20 days. Positive effects were observed in the growth parameters of the seedlings treated with 16 and 32mM silicate fertilizer; the most effective concentration of silicate at which seedlings showed the best performance was 16mM. However, a high concentration of silicate (256mM) caused negative effects on the growth. The transpiration rate decreased alongside with the increase of silicate concentration up to 32mM, possibly due to the increased stomatal diffusive resistance. Silicate stimulated the growth and development of tomato seedlings, resulting in increased growth parameters and root morphology. However, no significant differences were observed among treatment numbers of soil-drenching wuth the silicate (6, 10, or 20 times with 16mM) for 20 days, suggesting that silicate treatment with 6 times may be sufficient to induce the silicate effects. The application of 16mM of silicate fertilizer reduced relative ion leakage and chilling injury during low temperature storage. In addition, the seedlings treated with silicate fertilizer recovered faster than those without silicate treatment after low temperature storage.

Application of White Light Emitting Diodes to Produce Uniform Scions and Rootstocks for Grafted Fruit Vegetable Transplants (과채류 접목 시 균일한 접수와 대목 생산을 위한 백색 LED의 적용)

  • Hwang, Hyunseung;Chun, Changhoo
    • Journal of Bio-Environment Control
    • /
    • v.31 no.1
    • /
    • pp.14-21
    • /
    • 2022
  • Uniform scions and rootstocks should be produced to ensure grafting success. Light quality is an important environmental factor that regulates seedling growth. The effects of warm- and cool-white light emitting diode (LED) ratios on seedling growth were investigated. Scions and rootstocks of cucumber, tomato, and watermelon were grown in a closed transplant production system using LED as the sole lighting source. The LED treatments were W1C0 (only warm-white), W1C1 (warm-white: cool-white = 1:1), W3C1 (warm-white: cool-white = 3:1), and W5C2 (warm-white: cool-white = 5:2). The seedlings grown in W1C1 had the shortest hypocotyls, and the seedlings grown in W1C0 had the longest hypocotyls among the three tested vegetables. The hypocotyls of watermelon scions, watermelon rootstocks, and tomato rootstocks were shortest in W1C1, followed by those in W3C1, W5C2, and W1C0, but there was no significant difference between W3C1 and W5C2, which remained the same as the ratio of cool-white LEDs increased. In addition, tomato scions had the first and second longest hypocotyls in W1C0 and W3C1, respectively, and the shortest hypocotyls in W5C2 and W1C1, along with W5C2 and W1C1, although the difference was not significant. The stem diameter was highest in W1C0 except for tomato seedlings and rootstocks of watermelon. The shoot fresh weight of scions and rootstocks of cucumber and watermelon and the root fresh weight of cucumber scions were lowest in W1C1. These results indicated that different ratios of LED lighting sources had a strong effect on the hypocotyl elongation of seedlings.

Quality Changes of Cherry Tomato by Aqueous Chlorine Dioxide Treatment during Storage (이산화염소수 처리에 의한 방울토마토의 저장 중 품질 변화)

  • Lee, Kyung-Haeng;Yoon, Young-Tae;Ra, So-Jung
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.3
    • /
    • pp.396-403
    • /
    • 2015
  • To improve the shelf-life of cherry tomato, samples were treated with aqueous chlorine dioxide ($ClO_2$) at 30 ppm for 0~30 minutes and the weight loss rate as well as the changes in physico-chemical and sensory properties of treated samples were investigated. Weight change in the control and in the samples with aqueous $ClO_2$ treatment were decreased slightly, and there were no difference during the storage period. There were no differences in soluble solid content among the treatments and during the storage period. There were no differences in the firmness of samples among the treatments but the firmness of the aqueous $ClO_2$ treated samples were decreased slower than that of the control samples. No significant changes in lightness, redness and yellowness of the controls and the samples by aqueous $ClO_2$ treatment were observed during 4 weeks storage period. The sensory parameters including taste, flavor, color, texture and overall acceptance at the initial period did not differ among the treatments. The scores for taste, texture and overall acceptance of the control were decreased faster than those of the aqueous $ClO_2$ treated samples when 3 weeks reached.

Effects of Spray Times and Ventilation Method on the Seedling Growth of Fruit Vegetables (관수회수 및 송풍처리가 과채류의 묘 생장에 미치는 영향)

  • Kim Chang-Soo;Min Byeong-Ro;Kim Wong;Kim Dong-Woo;Seo Kwang-Wook;Lee Beom-Seon;Lee Dae-Weon
    • Journal of Bio-Environment Control
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • A multipurpose operating system was developed to adjust both spray times and ventilation method without a configuration of the moving path and the type of the greenhouse. The multipurpose working system proved to be a reliable system for testing the growth quality of the fruit vegetables in the greenhouse. The results are as follows. The first leaf, diameter of a stem, leaf area, and average stem diameter in the Cucumber seedling growth were repressed by high-speed ventilation, but was not repressed by spray times. The first leaf in the Tomato seedling growth was repressed as ventilation velocity was high, but the average stem diameter was not repressed. While the Tomato was given water three times a day, the diameter of a stem and the leaf area were increased as ventilation speed became higher. However, those were different other factors. The Tomato leaf area was larger when given water twice a day than that in hand spray, but showed no difference with ventilation speed. The first leaf, the diameter of a stem and the leaf area of a Red pepper were lower in automatic spraying with ventilation than those in hand spray.

Effect of osmotic potential on germination of tomato seed

  • Kim, Min Geun;Park, Sunyeob;Kim, Du Hyun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.214-214
    • /
    • 2017
  • Seeds of Tomato (Lycopersicon esculentum Mill.) have demanded high quality because of their high cost of seed. The optimization of the seed priming techniques that have positive effect on fast and uniform germination becomes important at the commercial level. Several factors such as solution composition, osmotic potential, and treatment duration affect seed priming response. In this study, osmotic potentials of priming solution and germination characteristics of primed seed were investigated to clarify the effects different inorganic salt types and the duration. Tomato seeds were primed in osmotic solutions that were osmotic potential ranged -1.54 to -0.45 MPa in an aerated solution of PEG 8000 (17%, 22%, 27%), and inorganic salt solution of $KNO_3$, $Na_2SO_4$, and $K_2SO_4$ (100, 200, 300mM). The seeds were treated at $20^{\circ}C$ for 2, 4, and 6 days. After each treatment, the seeds were dried to moisture content ranged 5-8% at $25^{\circ}C$. Four replications of 25 seeds per each treatments were placed in 10-cm petri dishes containing two filter papers and 3 ml of $dH_2O$ and incubated at $20^{\circ}C/30^{\circ}C$ and $15^{\circ}C$ and seedlings evaluated for abnormality after 14 days of incubation. Seed water potential (${\psi}$) was correlated with water potential of priming solution ($r^2=0.86$). Seeds primed in 100mM $KNO_3$ resulted the highest germination rate (GR, $63.9 %{\cdot}day^{-1}$) and lowest mean germination time (MGT, 2.0 days) comparing to untreated control ($23.9%{\cdot}day^{-1}$ of germination rate and 4.1 days of MGT) at $20/30^{\circ}C$, even though 96% of germination percentage were not different. Seeds primed in 100mM $KNO_3$ (${\psi}=-0.45MPa$) for 4 days showed ${\psi}=-0.38MPa$. Priming in $Na_2SO_4$, $K_2SO_4$, and PEG solution for 6 days improved MGT and GR, but not significantly than 4 days of treatment. Additionally, stepwise osmotic solution treatment with 100mM and 300mM concentration for 6 day did not showed differences with single treatment. In relation to osmotic potentials, identical osmotic potential in different inorganic salt solution showed different effect on germination characteristics.

  • PDF

Effects of Soil Moisture Control and Truss Limited High Density Culture on the Growth and Yield of Tomato(Lycopersicon esculentum Mill. cv. Momotaroyork) (토양수분조절과 저단밀식재배가 토마토의 생육 및 수량에 미치는 영향)

  • Kim, Gi-Don;Yoon, Wha-Mo
    • The Journal of Natural Sciences
    • /
    • v.14 no.2
    • /
    • pp.103-114
    • /
    • 2004
  • This study aims at investigating the effect of soil moisture control and truss limited high density culture on the growth, fruit yield and quality of tomato. To minimize of loss yield of tomato, flower cluster in number was limited to two and three truss and planting density was raised. Soil moisture control was started from 40 days after anthesis and irrigation point was set in -30kPa and -50kPa, which were compared with -10kPa For high density culture, the planting number of truss limited high density culture was planted twice as many as control. Soil moisture repression reduced the growth of stem diameter, leaf and plant height. Leaf chlorophyll content was higher in -50kPa and -30kPa than control. No significant differences, however, shows in -10kPa. The occurrence rate of bloom-end rot and cracking was increased by growing of irrigation repression. Pinching three fruit truss was higher than pinching two fruit truss in the occurrence rate of them. Soil moisture repression resulted in the reduction of fruit weight and in special, truss limited high density was distinctly decreased in -50kPa. The number of fruit was not affected by soil moisture control, but 3rd flower cluster was lower than 2nd flower cluster in the number of fruits and 2nd one was lower than 1st one. Under irrigation repression, rate of dry matter tended to grow in -30kPa, -50kPa compared with control and pinching three fruit truss was higher than two truss. Marketable yield dropped to 36.7%m 46.3 in -30kPa, -50kPa on pinching two fruit truss and dropped to 27.3%, 32.3% in 3rd flower cluster compared with control.

  • PDF

Changes in Physical and Chemical Properties of Coir Used as the Bag Culture Substrate of Greenhouse Tomatoes for Three Years

  • Song, Seung-Geun;Lee, Kyo-seok;Lee, Dong-Sung;Rhie, Ja-Hyun;Hong, Byeong-Deok;Bae, Hui-Su;Seo, Il-Hwan;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.503-509
    • /
    • 2016
  • To identify causes for drastic decrease in yield of tomato with repeated culturing number of the bag culture substrate of greenhouse tomatoes we investigated the physical and chemical properties of a coir used as the bag culture substrate to grow tomato at the Booyeo tomato experimental institute located in Booyeo, Chungnam Province for three years from 2012 to 2014. The results showed that total porosity ranged from 65.4 to 73.1% for the bulk densities of coir ranging from 0.12 to $0.14g\;cm^{-3}$. The volumetric water contents measured at 0.01 bar as air entry point were 25% (before), 33% ($1^{st}yr$), 45% ($2^{nd}yr$), and 37% ($3^{rd}yr$). Organic matter contents ranged from 82.0 to 96.2% (highest in $1^{st}yr$). pH and EC ranged from 4.47 to 6.47 (highest in $2^{nd}yr$), and from 22.2 to $53.5dS\;m^{-1}$ (highest in $1^{st}yr$) and cation exchange capacity ranged from 71.0 to $191.7cmol\;kg^{-1}$ (highest in $3^{rd}yr$). The surface structure observed with electrical microscope showed that the number of large pores decreased with increasing cultivating time while the proportion of smaller pores increased, indicating that the coir was consistently decomposed. Therefore, we could conclude that these changes of all physical and chemical properties of the coir may influence the holding capacities of water and nutrients, resulting in deterioration of quality of culture substrate of greenhouse tomatoes.

Effect of Olive-Oil Prepared Tomato Powder (OPTP) and Refining Lycopene on the Physicochemical and Sensory Characteristics of Seasoned Raw Pork During Storage (올리브유처리 토마토 분말과 정제 Lycopene이 저장 중 양념육의 물리화학적 및 관능적 특성에 미치는 영향)

  • Kim, Il-Suk;Jin, Sang-Keun;Kang, Suk-Nam;Hur, In-Chul;Choi, Seung-Youn
    • Food Science of Animal Resources
    • /
    • v.29 no.3
    • /
    • pp.334-339
    • /
    • 2009
  • This study was carried out to determine the effects of olive-oil prepared tomato powder (OPTP) and lycopene on seasoned raw pork. 1.5% OPTP was added in T1 and 3.0% in T2; and 0.03% refining lycopene was added in T3. While in storage, pH values of the treated samples were lower (p<0.05) than those of the control samples. Upon increasing storage, salinity values of OPTP samples increased as well, however, the values of T3 did not change. There were significantly higher TBARS values observed in the OPTP samples compared to control, but no significant difference between T3 and the control samples in TBARS values during storage. VBN values of T2 samples were lower than that of other samples at Day 3 and Day 6 of storage. At Day 9 however, the VBN values of T1 and T2 were significantly higher than those of the control and T3. There was no significant difference between the control and the treated samples in the total plate counts. There were relatively higher redness, yellowness and chromatic values observed in the treated samples than in control. In sensory evaluation, there was no significant difference between the control and the treated samples in color, tenderness, juiciness and overall acceptability.