DOI QR코드

DOI QR Code

Application of White Light Emitting Diodes to Produce Uniform Scions and Rootstocks for Grafted Fruit Vegetable Transplants

과채류 접목 시 균일한 접수와 대목 생산을 위한 백색 LED의 적용

  • Hwang, Hyunseung (Vegetable Research Division, National Institute of Horticultural and Herbal Science) ;
  • Chun, Changhoo (Department of Agriculture, Forestry and Bioresources, Seoul National University)
  • 황현승 (국립원예특작과학원 채소과) ;
  • 전창후 (서울대학교 식물산림자원학부)
  • Received : 2021.10.21
  • Accepted : 2022.01.10
  • Published : 2022.01.31

Abstract

Uniform scions and rootstocks should be produced to ensure grafting success. Light quality is an important environmental factor that regulates seedling growth. The effects of warm- and cool-white light emitting diode (LED) ratios on seedling growth were investigated. Scions and rootstocks of cucumber, tomato, and watermelon were grown in a closed transplant production system using LED as the sole lighting source. The LED treatments were W1C0 (only warm-white), W1C1 (warm-white: cool-white = 1:1), W3C1 (warm-white: cool-white = 3:1), and W5C2 (warm-white: cool-white = 5:2). The seedlings grown in W1C1 had the shortest hypocotyls, and the seedlings grown in W1C0 had the longest hypocotyls among the three tested vegetables. The hypocotyls of watermelon scions, watermelon rootstocks, and tomato rootstocks were shortest in W1C1, followed by those in W3C1, W5C2, and W1C0, but there was no significant difference between W3C1 and W5C2, which remained the same as the ratio of cool-white LEDs increased. In addition, tomato scions had the first and second longest hypocotyls in W1C0 and W3C1, respectively, and the shortest hypocotyls in W5C2 and W1C1, along with W5C2 and W1C1, although the difference was not significant. The stem diameter was highest in W1C0 except for tomato seedlings and rootstocks of watermelon. The shoot fresh weight of scions and rootstocks of cucumber and watermelon and the root fresh weight of cucumber scions were lowest in W1C1. These results indicated that different ratios of LED lighting sources had a strong effect on the hypocotyl elongation of seedlings.

광질은 묘의 형태를 조절하는 중요한 환경 요인 중 하나이다. warm-white와 cool-white LED의 칩에 비율이 다른 bar type를 제작하여, 백색 LED의 광질에 따른 묘의 생육을 조사하고자 연구를 수행하였다. 오이, 토마토 및 수박의 접수와 대목의 종자를 파종하여, LED를 광원으로 하는 식물공장에서 재배하였다. 처리구는 W1C0(warm-white 단독), W1C1 (warm-white:cool-white=1:1), W3C1 (warm-white:cool-white=3:1), W5C2 (warm-white:cool-white=5:2)이다. 모든 처리구에서 W1C1 처리구에서 재배한 묘목의 배축장이 가장 짧았으며, W1C0에서 재배된 묘목의 배축장이 가장 길었다. 수박 접수, 수박 대목, 그리고 토마토 대목의 배축장은 W1C1, W3C1, W5C2, W1C0 순이었으며, 이는 cool-white의 비율이 높은 순서와 같았다. 토마토 접수는 각각 W1C0과 W3C1에서 첫 번째와 두 번째로 배축이 길었고 W5C2와 W1C1에서 가장 짧았으며, 통계적 차이는 없었다. 경경은 토마토 접수, 토마토 대목 및 수박 대목을 제외하고는 큰 차이가 없었다. 토마토 접수, 토마토 대목 및 수박 대목의 줄기 직경은 W1C0에서 가장 굵었다. 오이, 수박의 접수와 대목의 지상부 생체중과 오이 접수의 지하부 생체중은 W1C1에서 가장 작았다. 본 연구를 통해 LED 광원의 다양한 비율은 묘목의 배축 신장에 크게 영향을 미치는 것을 확인하였다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 연구사업 "접목 로봇에 적합한 과채류 접수 및 대목 규격묘 생산을 위한 적정 광 환경 구명 및 식물 공장형 육묘시스템 개발"(PJ013840)의 지원에 의해 이루어진 것임.

References

  1. An S., S.W. Park, and Y. Kwack 2020, Growth of cucumber scions, rootstocks, and grafted seedlings as affected by different irrigation regimes during cultivation of 'joenbaekdadagi' and 'heukjong' seedlings in a plant factory with artificial lighting. Agronomy 10:1943. doi:10.3390/agronomy10121943
  2. Bula R., R. Morrow, T. Tibbitts, D. Barta, R. Ignatius, and T. Martin 1991, Light-emitting diodes as a radiation source for plants. HortScience 26:203-205. doi:10.21273/HORTSCI.26.2.203
  3. Chen X.L., W.Z. Guo, X.Z. Xue, L.C. Wang, and X.J. Qiao 2014, Growth and quality responses of 'Green Oak Leaf' lettuce as affected by monochromic or mixed radiation provided by fluorescent lamp (FL) and light-emitting diode (LED). Sci Hortic 172:168-175. doi:10.1016/j.scienta.2014.04.009
  4. Cope K.R., and B. Bugbee 2013, Spectral effects of three types of white light-emitting diodes on plant growth and development: absolute versus relative amounts of blue light. HortScience 48:504-509. doi:10.21273/HORTSCI.48.4.504
  5. Cope K.R., M.C. Snowden, and B. Bugbee 2014, Photobiological interactions of blue light and photosynthetic photon flux: Effects of monochromatic and broad-spectrum light sources. J Photochem Photobiol 90:574-584. doi:10.1111/php.12233
  6. He S.B., W.X. Wang, J.Y. Zhang, F. Xu, H.L. Lian, L. Li, and H.Q. Yang 2015, The CNT1 domain of Arabidopsis CRY1 alone is sufficient to mediate blue light inhibition of hypocotyl elongation. Mol Plant 8:822-825. doi:10.1016/j.molp.2015.02.008
  7. Hernandez R., and C. Kubota 2016, Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environ Exp Bot 121:66-74. doi:10.1016/j.envexpbot.2015.04.001
  8. Holmes M.G., and H. Smith 1977, The function of phytochrome in the natural environment-I. Characterization of daylight for studies in photomorphogenesis and photoperiodism. Photochem Photobiol 25:533-538. doi:10.1111/j.1751-1097.1977.tb09124.x
  9. Hwang H., S. An, M.D. Pham, M. Cui, and C. Chun 2020, The combined conditions of photoperiod, light intensity, and air temperature control the growth and development of tomato and red pepper seedlings in a closed transplant production system. Sustainability 12:9939. doi:10.3390/su12239939
  10. Jang Y., E. Goto, Y. Ishigami, B. Mun, and C. Chun 2011, Effects of light intensity and relative humidity on photosynthesis, growth and graft-take of grafted cucumber seedlings during healing and acclimatization. Hort Environ Biotechnol 52:331-338. doi:10.1007/s13580-011-0009-8
  11. Kumar P., L. Lucini, Y. Rouphael, M. Cardarelli, R.M. Kalunke, and G. Colla 2015, Insight into the role of grafting and arbuscular mycorrhiza on cadmium stress tolerance in tomato. Front Plant Sci 6:477. doi:10.3389/fpls.2015.00477
  12. Lee H., S.W. Park, M.D. Pham, H. Hwang, and C. Chun 2020, Effect of the light spectrum of white LEDs on the productivity of strawberry transplants in a plant factory with artificial lighting. Hort Environ Biotechnol 61:971-979. doi:10.1007/s13580-020-00284-0
  13. Lee J.G., S.S. Oh, S.H. Cha, Y.A. Jang, S.Y. Kim, Y.C. Um, and S.R. Cheong 2010a, Effect of red/blue light ratio and short-term light quality conversion on growth and anthocyanin. J Bio-Env Con 19:351-359. (in Korean)
  14. Lee J.M., C. Kubota, S.J. Tsao, Z. Bie, P.H. Echevarria, L. Morra, and M. Oda 2010b, Current status of vegetable grafting: diffusion, grafting techniques, automation. Sci Hortic 127: 93-105. doi:10.1016/j.scienta.2010.08.003
  15. Lee M.J., K.H. Son, and M.M. Oh 2016, Increase in biomass and bioactive compounds in lettuce under various ratios of red to far-red LED light supplemented with blue LED light. Hort Environ Biotechnol 57:139-147. doi:10.1007/s13580-016-0133-6
  16. Louws F.J., C.L. Rivard, and C. Kubota 2010, Grafting fruiting vegetables to manage soilborne pathogens, foliar pathogens, arthropods, and weeds. Sci Hortic 127:127-146. doi:10.1016/j.scienta.2010.09.023
  17. Massa G.D., H.H. Kim, R.M. Wheeler, and C.A. Mitchell 2008, Plant productivity in response to LED lighting. HortScience 43:1951-1956. doi:10.21273/HORTSCI.43.7.1951
  18. Mitchell C.A., M.P. Dzakovich, C. Gomez, R. Lopez, J.F. Burr, R. Hernandez, C. Kubota, C.J. Currey, Q. Meng, E.S. Runkle, C.M. Bourget, R.C. Morrow, and A.J. Both 2015, Light-emitting diodes in horticulture. Hortic Rev 43:1-87. doi:10.1002/9781119107781.ch01
  19. Oda M. 1999, Grafting of vegetables to improve greenhouse production. Ext Bul 480:1-11
  20. Park K.W., and Y.S. Kim 1998, Hydroponics in horticulture. Academybook, Seoul, Korea, pp 76-90.
  21. Rouphael Y., E. Rea, M. Cardarelli, M. Bitterlich, D. Schwarz, and G. Colla 2016, Can adverse effects of acidity and aluminum toxicity be alleviated by appropriate rootstock selection in cucumber? Front Plant Sci 7:1283. doi:10.3389/fpls.2016.01283
  22. Schwarz D., Y. Rouphael, G. Colla, and J.H. Venema 2010, Grafting as a tool to improve tolerance of vegetables to abiotic stresses: thermal stress, water stress, and organic pollutants. Sci Hortic 127:162-171. doi:10.1016/j.scienta.2010.09.016
  23. Suzuki M., K. Kobayashi, K. Inooku, K. Miura, and K. Hirata 1995, Development of grafting robot for cucurbitaceous vegetables (Part 1). J Jpn Soc Agric Mach 57:67-76. (in Japanese) doi:10.11357/jsam1937.57.2_67
  24. Tian S., Z. Wang, J. Yang, Z. Huang, R. Wang, L. Wang, and J. Dong 2017, Development of an automatic visual grading system for grafting seedlings. Adv Mech Eng 9:1-12. doi:10.1177/1687814016686265
  25. Wang H., M. Gu, J.X. Cui, K. Shi, Y.H. Zhou, and J.Q. Yu 2009, Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes, and carbohydrate accumulation in Cucumis sativus. J Photochem Photobiol B 96:30-37. doi:10.1016/j.jphotobiol.2009.03.010
  26. Xie Z., S. Gu, Q. Chu, B. Li, K. Fan, Y. Yang, Y. Yang, and X. Liu 2020, Development of a high-productivity grafting robot for Solanaceae. Int J Agric & Biol Eng 13:82-90. doi:10.25165/j.ijabe.20201301.5209
  27. Yang H.Q., Y.J. Wu, R.H. Tang, D. Liu, Y. Liu, and A.R. Cashmore 2000, The C termini of Arabidopsis cryptochromes mediate a constitutive light response. Cell 103:815-827. doi:10.1016/S0092-8674(00)00184-7
  28. Yetisir H., and N. Sari 2003, Effect of different rootstock on plant growth, yield, and quality of watermelon. Austral J Exp Agric 43:1269-1274. doi:10.1071/EA02095
  29. Yorio N.C., G.D. Goins, H.R. Kagie, R.M. Wheeler, and J.C. Sager 2001, Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation. HortScience 36:380-383. doi : 10.21273/HORTSCI.36.2.380