• Title/Summary/Keyword: tomato plant

Search Result 965, Processing Time 0.032 seconds

Development and Evaluation of PCR-Based Detection for Pseudomonas syrinage pv. tomato in Tomato Seeds (토마토 종자로부터 PCR을 이용한 Pseudomonas syringae pv. tomato의 검출)

  • Cho, Jung-Hee;Yim, Kyu-Ock;Lee, Hyok-In;Yea, Mi-Chi;Cha, Jae-Soon
    • Research in Plant Disease
    • /
    • v.17 no.3
    • /
    • pp.376-380
    • /
    • 2011
  • The bacterial speck of tomato caused by Pseudomonas syringae pv. tomato leads to serious economic losses especially on fruits of susceptible genotype. Thus, Pseudomonas syringae pv. tomato is a plant quarantine bacterium in many countries including Korea. In this study, we developed specific PCR assays for detection of the bacterium from tomato seeds. A specific primer set is designed from the hrpZ gene for specific detection of Pseudomonas syringae pv. tomato. A 501 bp PCR product corresponding to hrpZ gene was amplified only form Pseudomonas syringae pv. tomato strains, but no PCR product was amplified from other tomato bacterial pathogens, such as Pseudomonas syringae pv. glycinea, P. syringae pv. maculicola, P. syringae pv. atropurpurea, P. syringae pv. morsprunorum, and from other P. syringae pathovar strains. The nested-PCR primer set corresponding to an internal fragment of the 501 bp sequence (hrpZ) gine was used to specific detection of Pseudomonas syringae pv. tomato in tomato seed. A 119 bp PCR product using nested PCR primer was highly specific and sensitive to detect low level of Pseudomonas syrigae pv. tomato in tomato seeds. We believe that the PCR assays developed in this study is very useful to detect Pseudomonas syringae pv. tomato from the tomato seeds.

Induced Resistance in Tomato Plants Against Fusarium Wilt Invoked by Nonpathogenic Fusarium, Chitosan and Bion

  • Amini, J.
    • The Plant Pathology Journal
    • /
    • v.25 no.3
    • /
    • pp.256-262
    • /
    • 2009
  • The potential of. nonpathogenic Fusarium oxysporum strain Avr5, either alone or in combination with chitosan and Bion, for inducing defense reaction in tomato plants inoculated with F. oxysporum f. sp lycopersici, was studied in vitro and glasshouse conditions. Application Bion at concentration of 5, 50, 100 and $500{\mu}g$/ml, and the highest concentration of chitosan reduced in vitro growth of the pathogen. Nonpathogenic F. oxysporum Avr5 reduced the disease severity of Fusarium wilt of tomato in split plants, significantly. Bion and chitosan applied on tomato seedlings at concentration $100{\mu}g$ a.i./plant; 15, 10 and 5 days before inoculation of pathogen. All treatments significantly reduced disease severity of Fusarium wilt of tomato relative to the infected control. The biggest disease reduction and increasing tomato growth belong to combination of nonpathogenic Fusarium and Bion. Growth rate of shoot and root markedly inhibited in tomato plants in response to tomato Fusarium wilt as compared with healthy control. These results suggest that reduction in disease incidence and promotion in growth parameters in tomato plants inoculated with nonpathogenic Fusarium and sprayed with elicitors could be related to the synergistic and cooperative effect between them, which lead to the induction and regulation of disease resistance. Combination of elicitors and non-pathogenic Fusarium synergistically inhibit the growth of pathogen and provide the first experimental support to the hypothesis that such synergy can contribute to enhanced fungal resistance in tomato. This chemical could provide a new approach for suppression of tomato Fusarium wilt, but its practical use needs further investigation.

Relation of Plant Age to Bacterial Multiplication in Pepper and Tomato Leaves Inoculated with Xanthomonas campestris pv. vesicatoria (Xanthomonas campestris pv. veicatoria에 감염된 고추와 토마토잎에서의 세규증식과 식물나이와의관계)

  • 이종탁;황병국
    • Korean Journal Plant Pathology
    • /
    • v.10 no.1
    • /
    • pp.18-24
    • /
    • 1994
  • Multiplications and pathogenic reactions of different pepper and tomato strains of Xanthomonas campestris pv. vesicatoria were evaluated in the most upper leaves of pepper and tomato plants at different growth stages. Hypersensitive reactions were induced in mature pepper plants by inoculation with only the tomato strains but not with the pepper strains, suggesting the expression of age-related resistance in pepper plants. The age-related resistance also seems to be correlated with an apparent inability of the bacteria to multiply as extensively in mature as in young plants. No significant differences among the Korean and U. S. pepper cultivars tested were found in bacterial multiplication, irrespective of bacterial stain or plant growth stage. Korean tomato cultivars tested also were highly susceptible to either tomato or pepper strains during the development of tomato plants.

  • PDF

First Report of Bacterial Wilt Caused by Ralstonia solanacearum Biovar 2 Race 1 on Tomato in Egypt

  • Seleim, Mohamed A.A.;Abo-Elyousr, Kamal A.M.;Abd-El-Moneem, Kenawy M.;Saead, Farag A.
    • The Plant Pathology Journal
    • /
    • v.30 no.3
    • /
    • pp.299-303
    • /
    • 2014
  • This study aims to isolate and identify the causal pathogen of tomato bacterial wilt in Egypt. In 2008, tomato plants showing typical symptoms of bacterial wilt disease with no foliar yellowing were observed in Minia, Assiut and Sohag governorates, Egypt. When cut stems of symptomatic plants were submerged in water, whitish ooze was evident and longitudinal sections showed a brown discoloration in the vascular tissues. Bacteria were isolated on triphenyl tetrazolium chloride medium and fifteen isolates shown typical morphological and cultural characteristics were confirmed as Ralstonia solanacearum biovar 2 race 1. Pathogenicity tests showed that all isolates proved to be pathogenic to tomato plants, varied from 52 to 97% wilting. This is the first report of R. solanacearum biovar 2 race 1 causing bacterial wilt in tomato crop in Egypt.

Transient and stable expression of hepatitis B surface antigen in tomato (Lycopersicon esculentum L.)

  • Srinivas, L.;Sunil Kumar, G.B.;Ganapathi, T.R.;Revathi, C.J.;Bapat, V.A.
    • Plant Biotechnology Reports
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • Cotyledonary leaves of tomato cv. Megha were transformed with the hepatitis B virus 's' gene, which encodes surface antigen. Six plant expression cassettes (pHBS, pHER, pEFEHBS, pEFEHER, pSHER and pEFESHER) were used to assay the possible expression levels by agroinfiltration. The maximum transient expression level of 489.5 ng/g D.W. was noted in pEFEHER-infiltrated cotyledonary leaves. Transgenic tomato plants with pEFEHBS and pEFEHER expression cassettes were regenerated and characterized by molecular analysis. The expression of the antigen in the fruits was confirmed by RT-PCR and ELISA analysis. This is the first report on the expression of hepatitis B surface antigen in tomato.

Pseudomonas putida Strain 17 Isolated from Replant Soil Promotes Tomato Growth and Inhibits Conidial Germination of Soilborne Plant Pathogens

  • Lee, Sang-Woo;Ahn, Il-Pyung;Lim, Jae-Wook;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • v.21 no.3
    • /
    • pp.244-251
    • /
    • 2005
  • The induction of growth promotion on numerous crops by rhizobacteria is a well documented phenomenon. In case of tomato (Lycopersicon esculentum), fruit yield is higher in replant soil than that in fresh soil. To investigate what kind of rhizobacterium is involved, microbial community in rhizosphere and on rhizoplane of tomato plants from each soil was analyzed by dilution plating on selective media. Many Gram-negative bacteria and actinomycetes were isolated from tomato in replant soil. One Gram-negative rhizobacterium isolated was identified as Pseudomonas putida based on its biochemical characteristics, fatty acid methyl ester analysis and 16S rDNA sequence. This bacterium designated strain 17 inhibited the growth of Pseudomonas corrugata, and increased growth of tomato seedlings. In addition, its culture filtrate inhibited conidial germination of plant-pathogenic fungi such as Fusarium oxysporum f. sp. radicis-lycopersici, F. oxysporum f. sp. cucumerinum, and Nectria radicicola. Scanning electron microscopy revealed strain 17 colonized and persisted on the epidermal surfaces of tomato radicles and roots. These results suggest that P. putida strain 17 may serve as a biological control agent to suppress multiple soil-borne diseases for tomato plants. Increased microbial populations that suppress deleterious microorganisms including pathogens could be one of the major factors in increased tomato yield in replant soil.

Antimicrobial Activity of Various Parts of Tomato Plants Varied with Different Solvent Extracts

  • Kim, Dong Sub;Kwack, Yurina;Lee, Jung Heon;Chun, Changhoo
    • The Plant Pathology Journal
    • /
    • v.35 no.2
    • /
    • pp.149-155
    • /
    • 2019
  • The antimicrobial activity of acetone, hexane, dichloromethane, and methanol extracts from leaves, stems, immature green fruits, and red fruits of tomato plants was examined against six phytopathogens. The minimum inhibitory concentration (MIC) of the acetonic extracts from these four plant parts was lower than that of the other solvents. Among the acetonic extracts, tomato leaves had a lower MIC than the other tomato parts. The acetonic extract from tomato leaves was therefore selected as a source of antimicrobial substances. The acetonic extract from tomato leaves inhibited mycelial growth of Fusarium oxysporum f. sp. lycopersici, Glomerella cingulata, and Rhizoctonia solani. Mycelial growth of R. solani treated with acetone extract from leaves showed more susceptibility than the other phytopathogens. Using 0.31 mg/ml of the acetonic extract from leaves, mycelial growth of R. solani on days 1, 2, and 3 decreased by 50.0, 52.1, and 64.0%, respectively, compared with acetone solvent treatment. The antimicrobial compounds effective against R. solani were identified as linolenic acid and caffeic acid by bioautography and GC-MS. These two compounds were used to treat six phytopathogens to confirm their antimicrobial activities. Linolenic acid inhibited mycelial growth of R. solani, while caffeic acid showed only slight antimicrobial activity. Results indicated that we propose extracts from tomato leaves which included antimicrobial compounds may provide a new lead in the pursuit of new biological sources of agrochemical candidates.

Survey and Screening of Fungicide for the Control of Tomato Black Leaf Mold Pseudocercospora fuligena

  • Lee, Mun Haeng;Lee, Hee Keyung;Cho, Pyeng Hwa;Kim, Young Shik;Cho, Suk Keyung;Kim, Sung Eun;Chun, Hee;Kim, Hong Gi;Kim, Sang Woo;Lee, Youn Su
    • Research in Plant Disease
    • /
    • v.21 no.2
    • /
    • pp.94-98
    • /
    • 2015
  • Tomato black leaf molds were collected from the six metropolitan cities, which were occurred mainly from the end of August until November. There was no significant difference on the fungal growth between potato dextrose agar and tomato-oatmeal agar media. The mycelial growth of the fungus was robust at a relatively high temperature, from 28 to $30^{\circ}C$. The suppression rates of hyphal growth ranged from 17-98% on the media supplemented with four different chemicals such as difenoconazole, fluquinconazole and prochloraz manganese complex, metconazole, and flutianil and there is no different suppression rates of the fungicides on the tested Pseudocercospora fuligena isolates.

Genome-wide Identification, Classification, and Expression Analysis of the Receptor-Like Protein Family in Tomato

  • Kang, Won-Hee;Yeom, Seon-In
    • The Plant Pathology Journal
    • /
    • v.34 no.5
    • /
    • pp.435-444
    • /
    • 2018
  • Receptor-like proteins (RLPs) are involved in plant development and disease resistance. Only some of the RLPs in tomato (Solanum lycopersicum L.) have been functionally characterized though 176 genes encoding RLPs, which have been identified in the tomato genome. To further understand the role of RLPs in tomato, we performed genome-guided classification and transcriptome analysis of these genes. Phylogenic comparisons revealed that the tomato RLP members could be divided into eight subgroups and that the genes evolved independently compared to similar genes in Arabidopsis. Based on location and physical clustering analyses, we conclude that tomato RLPs likely expanded primarily through tandem duplication events. According to tissue specific RNA-seq data, 71 RLPs were expressed in at least one of the following tissues: root, leaf, bud, flower, or fruit. Several genes had expression patterns that were tissue specific. In addition, tomato RLP expression profiles after infection with different pathogens showed distinguish gene regulations according to disease induction and resistance response as well as infection by bacteria and virus. Notably, Some RLPs were highly and/or unique expressed in susceptible tomato to pathogen, suggesting that the RLP could be involved in disease response, possibly as a host-susceptibility factor. Our study could provide an important clues for further investigations into the function of tomato RLPs involved in developmental and response to pathogens.

Effect of Bacillus mesonae H20-5 on Fruit Yields and Quality in Protected Cultivation

  • Yoo, Sung-Je;Kim, Jeong Woong;Kim, Sang Tae;Weon, Hang-Yeon;Song, Jaekyeong;Sang, Mee Kyung
    • Research in Plant Disease
    • /
    • v.25 no.2
    • /
    • pp.84-88
    • /
    • 2019
  • A variety of microorganisms in rhizosphere affect plant health by plant growth promotion, mitigation of abiotic stresses as well as protection from pathogen attacks. In our previous study, we selected a bacterium, Bacillus mesonae H20-5, for alleviation of salinity stress in tomato plants. In this study, we verified the effect of a liquid formulation of B. mesonae H20-5 (TP-H20-5) on fruit production and phytochemical accumulation including lycopene and polyphenol in cherry tomato and strawberry fruits in on-farm tests of protected cultivation under salinity stress. When vegetables including tomato, cherry tomato, strawberry, and cucumber were treated with TP-H20-5 by irrigated systems, final marketable yields were increased by 21.4% (cherry tomato), 9.3% (ripen tomato), 120.6% (strawberry), and 14.5% (cucumber) compared to untreated control. Moreover, treatment of TP-H20-5 was showed increase of phytochemicals such as lycopene and total polyphenol compared to untreated control in cherry tomato and strawberry. Therefore, these results indicated that a formulant of B. mesonae H20-5 can be used as a potential biofertilizer for increasing fruit production and quality.