• 제목/요약/키워드: tomato disease

검색결과 331건 처리시간 0.025초

Occurrence of Three Strains of Cucumber mosaic virus Affecting Tomato in Kuwait

  • Montasser Magdy Shaban;Dashti Narjes Haji;Ali Neda Yousef;Bhardwaj Radhika Guleri;Al-Hamar Bader
    • The Plant Pathology Journal
    • /
    • 제22권1호
    • /
    • pp.51-62
    • /
    • 2006
  • Three strains of Cucumber mosaic virus (CMV) have been found to cause a lethal disease, referred to as fern leaf syndromes and mild mosaic symptoms in tomato (Lycopersicon esculentum Mill.) crops grown in Kuwait. CMV strains were detected and identified based on host range, symptomatology, serology, electron microscopy, and ribonucleic acid (RNA) electrophoresis in polyacrylamide gels. A high degree of viral genomic heterogeneity was detected among CMV strains isolated in Kuwait, with no apparent correlation to symptomatology in tomato host plants. Two different virus satellites of 'CMV associated RNA 5', designated CARNA 5, were detected in two virus strains that caused both lethal disease and mild symptoms, designated CMV-D1 and CMV-S1 respectively. CARNA5 was not detected in the third CMV strain that caused fern leaf syndromes designated CMV-F. All the three isolated strains were serologically indistinguishable from each other and may belong to one serotype according to Ouchterlony gel diffusion tests. These strains transmitted via aphids (Myzus persicae Sulz) in a non-persistent manner. Physical properties of the virus strains were very similar where thermal inactivation test showed that virus withstood heating for 10 min at $70^{/circ}$, dilution end point was $10^{-4}$, and the longevity in vitro at room temperature was less than 5 days for all virus strains. CMV-D1 and CMV-F were the most devastating diseases spreading in both greenhouse and field-grown tomato where aborted flower buds failed on fruit setting due to the viral infection. This is the first report to isolate three different strains of CMV in Kuwait.

코퍼 하이드록사이드를 이용한 토마토 풋마름병 방제 (Control of Bacterial Wilt of Tomato using Copper Hydroxide)

  • 한유경;한경숙;이성찬;김수
    • 농약과학회지
    • /
    • 제15권3호
    • /
    • pp.298-302
    • /
    • 2011
  • 국내에서 Ralstonia solanacearum에 의한 풋마름병은 토마토 재배에 심각한 피해를 주고 있다. R. solanacearum에 의한 풋마름병을 방제하기 위한 약제를 선발하기 위하여 5종 항생제를 이용하여 균에 대한 생장 억제 효과와 포장에서의 토마토 풋마름병 방제효과를 조사하였다 R. solanacearum에 대한 생장억제효과를 조사한 결과, streptomycin 수화제, oxytetracyclin streptomycin sulfate 수화제, oxolinic acid 수화제는 병원균에 대한 생육억제 효과가 우수하였다. 포장에서 토마토 풋마름병에 대한 방제효과 시험을 실시한 결과, copper hydroxide 수화제가 62.5%의 가장 높은 방제효과를 나타내었다. Copper hydroxide 수화제는 친환경유기농자재에 등록된 약제로서 관행 재배뿐만 아니라 토마토 친환경 재배시에도 풋마름병 방제에 사용할 수 있을 것이다.

토마토 황화잎말림바이러스(TYLCV) 저항성 품종 선발 및 원예특성 분석 (Selection and Characterization of Horticultural Traits of Tomato leaf curl virus (TYLCV)-resistant Tomato Cultivars)

  • 김우일;김광환;김영봉;이흥수;손길만;박영훈
    • 원예과학기술지
    • /
    • 제31권3호
    • /
    • pp.328-336
    • /
    • 2013
  • 본 연구는 외국 종자 회사의 토마토 $F_1$ 품종들을 대상으로 토마토황화잎말림바이러스(TYLCV) 저항성 분자마커 분석과 포장병리검정을 통해 각 품종의 저항성 유전자형과 내병성 수준을 분석하고, 원예형질 특성평가를 통해 TYLCV 저항성 품종보급과 분리육종에 적절한 품종선발을 위해 수행되었다. 40개 공시품종의 분자마커 및 병리검정 결과, 대부분 저항성으로 표기된 품종들이 TYLCV 저항성 유전자인 Ty-1, Ty-3, 또는 Ty-3a유전자를 이형접합 또는 동형접합으로 지니고 있으며, 표현형에서도 매우 낮은 발병률을 보였다. 반면, 중간 저항성으로 표기된 4 품종 중 3 품종은 18.1-33.3%의 발병률을 보였으며, 마커형이 이병성이었다. 내병성이 확인된 $F_1$품종들을 대상으로 원예형질 특성조사 결과, 유럽형 TYLCV 저항성 대과종 품종은 국내 선호 대비종보다 비교적 수량이 높고 당도 및 당산도도 크게 떨어지지 않아 국내용 품종 육성재료로 적합하였지만, 높은 과실경도의 문제점이 있었다. 반면, 소과종 품종들은 수량, 당도 등에서 국내 선호 품종보다 낮고 절간장도 길어 이들을 활용한 고품질 TYLCV 저항성 품종 육성을 위해서는 대과종에 비해 많은 시간과 노력이 소요될 것으로 판단되었다.

Reduced Bacterial Wilt in Tomato Plants by Bactericidal Peroxyacetic Acid Mixture Treatment

  • Hong, Jeum Kyu;Jang, Su Jeong;Lee, Young Hee;Jo, Yeon Sook;Yun, Jae Gill;Jo, Hyesu;Park, Chang-Jin;Kim, Hyo Joong
    • The Plant Pathology Journal
    • /
    • 제34권1호
    • /
    • pp.78-84
    • /
    • 2018
  • Peroxyacetic acid mixture Perosan, composed of peroxyacetic acid, hydrogen peroxide and acetic acid, was evaluated for eco-friendly management of tomato bacterial wilt by Ralstonia pseudosolanacearum. Perosan drastically suppressed in vitro growth of R. pseudosolanacearum in liquid cultures in dose- and incubation time-dependent manners. Higher perosan doses (0.1 and 1%) caused lowered pH and phytotoxicity to detached leaves of two tomato cultivars Cupirang and Benekia 220 in aqueous solution. Treatment with 0.01% of Perosan delayed wilting symptom significantly in the detached leaves of two cultivars inoculated with R. pseudosolanacearum ($10^7cfu/ml$). Soil drenching of 5% Perosan solution in pots caused severe tissue collapse of tomato seedlings at the four-week-old stage of two tomato cultivars. Treatment with 1% Perosan by soil-drenching significantly reduced bacterial wilt in the tomato seedlings of two cultivars. These findings suggest that Perosan treatment can be applied to suppress bacterial wilt during tomato production.

Biological Potential of Bioorganic Fertilizer Fortified with Bacterial Antagonist for the Control of Tomato Bacterial Wilt and the Promotion of Crop Yields

  • Wu, Kai;Fang, Zhiying;Wang, Lili;Yuan, Saifei;Guo, Rong;Shen, Biao;Shen, Qirong
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권10호
    • /
    • pp.1755-1764
    • /
    • 2016
  • The application of Bacillus sp. in the biological control of plant soilborne diseases has been shown to be an environmentally friendly alternative to the use of chemical fungicides. In this study, the effects of bioorganic fertilizer (BOF) fortified with Bacillus amyloliquefaciens SQY 162 on the suppression of tomato bacterial wilt were investigated in pot experiments. The disease incidence of tomato wilt after the application of BOF was 65.18% and 41.62% lower at 10 and 20 days after transplantation, respectively, than in the control condition. BOF also promoted the plant growth. The SQY 162 populations efficiently colonized the tomato rhizosphere, which directly suppressed the number of Ralstonia solanacearum in the tomato rhizosphere soil. In the presence of BOF, the activities of defense-related enzymes in tomato were lower than in the presence of the control treatment, but the expression levels of the defense-related genes of the plants in the salicylic acid and jasmonic acid pathways were enhanced. It was also found that strain SQY 162 could secrete antibiotic surfactin, but not volatile organic compounds, to suppress Ralstonia. The strain could also produce plant growth promotion compounds such as siderophores and indole-3-acetic acid. Thus, owing to its innate multiple-functional traits and its broad biocontrol activities, we found that this antagonistic strain isolated from the tobacco rhizosphere could establish itself successfully in the tomato rhizosphere to control soilborne diseases.

토마토반점위조바이러스에 대한 토마토 품종의 생물적 내병성 평가 (Evaluation of Tomato spotted wilt virus-GT Tolerance in Tomato Cultivars)

  • 최국선;최승국;조인숙;권선정;윤주연;김장훈
    • 식물병연구
    • /
    • 제22권3호
    • /
    • pp.213-216
    • /
    • 2016
  • 토마토반점위조바이러스(TSWV)는 토마토 식물체에 가장 심한 피해를 주는 바이러스들 중의 한 종이다. 2015년에 선단 부위가 고사되는 토마토 식물체의 잎에서 분리한 TSWV-GT를 토마토 품종들에 대한 내병성 검정에 활용하였다. 우리나라에서 시판되고 있는 토마토 51품종 중 'TY 스마트사마'와 '마놀리아'는 내병성, '티티찰', 'TY 센스큐' 및 '베네키아'는 중간내병성이었다.

Isolation and Identification of Burkholderia pyrrocinia CH-67 to Control Tomato Leaf Mold and Damping-off on Crisphead Lettuce and Tomato

  • Lee, Kwang-Youll;Kong, Hyun-Gi;Choi, Ki-Hyuck;Lee, Seon-Woo;Moon, Byung-Ju
    • The Plant Pathology Journal
    • /
    • 제27권1호
    • /
    • pp.59-67
    • /
    • 2011
  • A bacterial strain CH-67 which exhibits antagonism towards several plant pathogenic fungi such as Botrytis cinerea, Fulvia fulva, Rhizoctonia solani, Sclerotinia sclerotiorum, Colletotrichum sp. and Phytophthora sp. was isolated from forest soil by a chitin-baiting method. This strain was identified as Burkholderia cepacia complex (Bcc) and belonging to genomovar IX (Burkholderia pyrrocinia) by colony morphology, biochemical traits and molecular method like 16S rRNA and recA gene analysis. This strain was used to develop a bio-fungicide for the control of tomato leaf mold caused by Fulvia fulva. Various formulations of B. pyrrocinia CH-67 were prepared using fermentation cultures of the bacterium in rice oil medium. The result of pot experiments led to selection of the wettable powder formulation CH67-C containing modified starch as the best formulation for the control of tomato leaf mold. CH67-C, at 100-fold dilution, showed a control value of 85% against tomato leaf mold. Its disease control efficacy was not significantly different from that of the chemical fungicide triflumidazole. B. pyrrocinia CH-67 was also effective in controlling damping-off caused by Rhizoctonia solani PY-1 in crisphead lettuce and tomato plants. CH67-C formulation was recognized as a cell-free formulation since B. pyrrocinia CH-67 was all lethal during formulation process. This study provides an effective biocontrol formulation of biofungicide using B. pyrrocinia CH-67 to control tomato leaf mold and damping-off crisphead lettuce and tomato.

토마토 풋마름병에 대한 효율적인 저항성 검정 방법 개발 (Development of an Efficient Screening System for Resistance of Tomato Cultivars to Ralstonia solanacearum)

  • 이지현;장경수;최용호;김진철;최경자
    • 식물병연구
    • /
    • 제21권4호
    • /
    • pp.290-296
    • /
    • 2015
  • Ralstonia solanacearum에 의해 발생하는 토마토 풋마름병에 대한 효율적인 저항성 검정법을 확립하고자 감수성 및 저항성 토마토 9개 품종의 접종 방법, 토마토의 생육시기, 접종 농도 및 접종 후 재배 온도에 따른 풋마름병 발생을 조사하였다. 상처없이 풋마름병균 현탁액을 관주하여 접종한 토마토는 뿌리에 scalpel로 인위적인 상처를 내고 접종한 토마토보다 감수성과 저항성 반응이 더 분명하게 나타났다. 그리고 저항성 토마토인 'Hwaii7996'은 실험한 모든 조건 즉 접종하는 토마토의 생육 시기(3, 6, 8, 10엽기), 접종 농도($OD_{600}=0.1-0.4$), 접종 후 재배온도(25, 30, $35^{\circ}C$)에서 고도의 저항성을 보였다. 그러나 감수성 품종들은 6엽기와 8엽기 토마토는 각각 3.7과 3.9의 높은 발병도를 보였으나, 3엽기와 10엽기 토마토는 각각 2.1과 0.5로 풋마름병 발생이 낮았다. 그리고 풋마름병균을 접종하고 25, 30, $35^{\circ}C$에 재배하였을 때, 감수성 품종들은 $25^{\circ}C$에서는 0.5 이하의 낮은 발병도를 보였으나 30와 $35^{\circ}C$에서는 각각 3.1과 2.9 이상의 높은 발병도를 나타냈다. 한편, 실험한 감수성 토마토 품종들은 접종원 농도($OD_{600}=0.1-0.4$)와 관계없이 높은 감수성을 나타냈다. 이상의 결과로부터 토마토 풋마름병에 대한 효율적인 저항성 검정 방법으로 접종 1주일 전에 이식하여 재배한 8엽기 토마토 유묘를 사용하여 뿌리에 상처를 내지 않고 풋마름병균 현탁액($OD_{600}=0.4$)을 토양 리터 당 50 ml씩 관주하여 접종하고, $30^{\circ}C$ 생육상에서 하루 12시간씩 광을 조사하면서 12-13일 동안 재배하는 것을 제안하고자 한다.

Biocontrol Activity of Aspergillus terreus ANU-301 against Two Distinct Plant Diseases, Tomato Fusarium Wilt and Potato Soft Rot

  • Choi, Hyong Woo;Ahsan, S.M.
    • The Plant Pathology Journal
    • /
    • 제38권1호
    • /
    • pp.33-45
    • /
    • 2022
  • To screen antagonistic fungi against plant pathogens, dual culture assay (DCA) and culture filtrate assay (CFA) were performed with unknown soil-born fungi. Among the different fungi isolated and screened from the soil, fungal isolate ANU-301 successfully inhibited growth of different plant pathogenic fungi, Colletotrichum acutatum, Alternaria alternata, and Fusarium oxysporum, in DCA and CFA. Morphological characteristics and rDNA internal transcribed spacer sequence analysis identified ANU-301 as Aspergillus terreus. Inoculation of tomato plants with Fusarium oxysporum f. sp. lycopersici (FOL) induced severe wilting symptom; however, co-inoculation with ANU-301 significantly enhanced resistance of tomato plants against FOL. In addition, culture filtrate (CF) of ANU-301 not only showed bacterial growth inhibition activity against Dickeya chrysanthemi (Dc), but also demonstrated protective effect in potato tuber against soft rot disease. Gas chromatography-tandem mass spectrometry analysis of CF of ANU-301 identified 2,4-bis(1-methyl-1-phenylethyl)-phenol (MPP) as the most abundant compound. MPP inhibited growth of Dc, but not of FOL, in a dose-dependent manner, and protected potato tuber from the soft rot disease induced by Dc. In conclusion, Aspergillus terreus ANU-301 could be used and further tested as a potential biological control agent.

Screening for Antifungal Endophytic Fungi Against Six Plant Pathogenic Fungi

  • Park, Joong-Hyeop;Park, Ji-Hyun;Choi, Gyung-Ja;Lee, Seon-Woo;Jang, Kyoung-Soo;Choi, Yong-Ho;Cho, Kwang-Yun;Kim, Jin-Cheol
    • Mycobiology
    • /
    • 제31권3호
    • /
    • pp.179-182
    • /
    • 2003
  • A total of 187 endophytic fungi were isolated from 11 plant species, which were collected from 11 locations in Korea. Their antifungal activities were screened in vivo by antifungal bioassays after they were cultured in potato dextrose broth and rice solid media. Antifungal activity against plant pathogenic fungi such as Magnaporthe grisea(rice blast), Corticium sasaki(rice sheath blight), Botrytis cinerea(tomato gray mold), Phytophthora infestans(tomato late blight), Puccinia recondita(wheat leaf rust), and Blumeria graminis f. sp. hordei(barley powdery mildew) was determined in vivo by observing the inhibition of plant disease development. Twenty(11.7%) endophytic fungi fermentation broths were able to control, by more than 90%, at least one of the six plant diseases tested. Among 187 liquid broths, the F0010 strain isolated from Abies holophylla had the most potent disease control activity; it showed control values of more than 90% against five plant diseases, except for tomato late blight. On the other hand, fourteen(7.5%) solid culture extracts exhibited potent disease control values of more than 90% against one of six plant diseases. The screening results of this study strongly suggested that metabolites of plant endophytic fungi could be good potential sources for screening programs of bioactive natural products.