• Title/Summary/Keyword: toluene adsorption

Search Result 163, Processing Time 0.031 seconds

Destruction of Volatile Organic Compounds Using Photocatalyst-Coated Construction Materials (건축자재의 산화티타늄 코팅을 통한 휘발성 유기화합물 분해)

  • Jo Wan-Kuen;Chun Hee-Dong
    • Journal of Environmental Science International
    • /
    • v.14 no.8
    • /
    • pp.785-792
    • /
    • 2005
  • In order to reduce roadside and indoor air pollution for volatile organic compounds VOC), it may be necessary to apply photocatalyst-coated construction materials. This study evaluated the technical feasibility of the application of $TiO_2$ photocatalysis for the removal of VOC present in roadside or indoor air. The photocatalytic removal of five target VOC was investigated: benzene, toluene, ethyl benzene and o,m,p-xylenes. Variables tested for the current study included ultraviolet(UV) light intensity coating materials, relative humidity (RH), and input concentrations. Prior to performing the parameter tests, adsorption of VOC onto the current experiment was surveyed, and no adsorption was observed. Stronger UV intensity provided higher photocatalytic destruction(PCD) efficiency of the target compounds. For higher humidity, higher PCD efficiency was observed. The PCD efficiency depended on coating material. Contrary to certain previous findings, lower PCD efficiencies were observed for the experimental condition of higher input concentrations. The current findings suggested that the four parameters tested in the present study should be considered for the application of photocatalyst-coated construction materials in cleaning VOC of roadside or indoor air.

Fabrication of Honeycomb Adsorbents by Using the Ceramic Paper and Adsorption Characteristics of VOC (세라믹섬유지를 사용한 허니컴 흡착소자 제조 및 VOC 흡착특성)

  • Yoo, Yoon-Jong;Cho, Churl-Hee;Kim, Hong-Soo;Ahn, Young-Soo;Han, Moon-Hee;Jang, Gun-Eik
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.11
    • /
    • pp.1035-1041
    • /
    • 2002
  • The adhesion characteristics of adsorbent during impregnation of Y-type and ZSM-5type zeolites into ceramic paper were analyzed, as the amount of silica sol in slurry for impregnation was varied. 31 wt% of zeolite particle, which is useful for VOC adsorption, was evenly dispersed and adhered on ceramic paper and original crystal structure of the zeolite remained unchanged even after binder application and heat treatment. Surface area of the impregnated ceramic paper was decreased compared with that of zeolite powder. And it was found to be attributed to the reduction of volume of mesopore while the volume of micropore under $20{\AA}$ was unchanged. Zeolite-impregnated honeycomb cylinder, whose diameter and length were 10 cm and 40 cm, respectively, was subjected to adsorption/desorption test with respect to toluene, MEK, cyclohexanone. All of the VOC's were removed by adsorption with efficiency higher than 97% and from the static adsorption test, $42 Nm^3/h$ of 300 ppmv-VOC-laden air was calculated be treated continuously, when the honeycomb was used in an adsorptive rotor system.

Design Standard of Activated Carbon Vessel for the Intermittent Emission Sources of Volatile Organic Compounds (휘발성 유기화합물의 간헐적 배출원에 대한 활성탄 흡착 시스템 설계기준)

  • Lee, Si-Hyun;Lim, Jeong-Whan;Rhim, Young-Jun;Kim, Sang-Do;Woo, Kwang-Je;Son, Mi-Sook;Park, Hee-Jae;Seo, Man-Cheol;Ryu, Seung-Kon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.2
    • /
    • pp.250-260
    • /
    • 2007
  • It was investigated that the emission characteristics of volatile organic compounds (VOCs) from small and medium companies located on industrial complexes in Metropolitan area. The emission characteristics are intermittent sources in which VOCs emissions are highly depends on the working condition. Optimized ventilation system to improve air quality in working area for the three typical companies were installed. Adsorption characteristics of major VOCs such as MEK, IPA, and toluene emitted front the companies were investigated for design of the activated carbon vessel as a VOCs control facility in each company. Concentration of total hydrocarbon and gas amounts needed to ventilation were also used as a design parameter. Mixed adsorbent to improve adsorption characteristics of problematic solvents like IPA and the design guideline of the activated carbon vessel have been suggested.

Determination of N,N-Dimethylformamide in Ambient Air Using Adsorption Sampling and Thermal Desorption with GC/MS Analysis (흡착-열탈착-GC/MS를 이용한 환경대기 중 N,N-Dimethylformamide 농도 측정)

  • Seo, Young-Kyo;Hwang, Yoon-Jung;Lee, Soon-Jin;Lee, Min-Do;Han, Jin-Seok;Baek, Sung-Ok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.4
    • /
    • pp.357-366
    • /
    • 2010
  • The purpose of this study is to evaluate a method for the measurement of N,N-Dimethylformamide (DMF) and to apply the method to the ambient air samples. For the determination of DMF together with other general VOCs (e.g., benzene, toluene, and xylenes), adsorption sampling and thermal desorption with GC/MS was used in this study. The sampling and analytical approaches tested in this study showed a good repeatability and linearity with lower detection limits of less than 0.35 ppb. Field measurements were carried out at three industrial sites (Daegu-Seongseo, Siwha and Banwall industrial complexes) and one residential site in Daegu city during a period from October 2006 to November 2008. DMF was detected in 71.8% of the total samples from the Seongseo industrial complex, well known for textile industry. In contrast, DMF was detected in only 20.4% and 12.9% of all the samples from the other two sites in Banwall and Siwha industrial complexes, respectively. This implies that sources of DMF should be strongly associated with textile industry. The mean concentration of DMF also appeared to be the highest in Seongseo site (5.95 ppb), followed by a residential site in Daegu (3.28 ppb), Banwall (0.88 ppb) and Siwha (0.55 ppb). In this study, we demonstrated the environmental significance of DMF in urban ambient air. To our knowledge, the DMF measurement introduced in this paper is the first case of an official report in Korea.

Photocatalytic Treatment of Waste Air Containing Malodor and VOC by Photocatalytic Reactor Equipped with the Cartridges Containing the Media Carrying Photocatalyst (광촉매 카트리지를 활용한 악취 및 VOC를 함유한 폐가스의 광촉매처리)

  • Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.80-86
    • /
    • 2013
  • In this study, the photocatalytic reactor system equipped with photocatalyst-carrying-silica-media cartridges [photocatalytic reactor system (1)] was used to perform the treatment of waste air containing malodor and volatile organic compound (VOC). The result of its performance was evaluated and compared with that of the photocatalytic reactor system equipped with commercial photocatalyst-carrying-nonwoven filter-media cartridges [photocatalytic reactor system (2)]. In case of photocatalytic reactor system (1), at the 1st stage of run the removal efficiencies of ethanol and toluene continued to be 80% and 20%, respectively. However, unlike toluene, the removal efficiency of ethanol dropped to 40% at the end of the 1st stage of run. The removal efficiency of hydrogen sulfide decreased from 100% to 90%. At the 2nd stage of its run the removal efficiency of ethanol decreased to 10% while the removal efficiencies of hydrogen sulfide and toluene remained as same as 90% and 20%, respectively, even though the inlet load of toluene increased by factor of four. In the 3rd stage of its run, as the result of application of aluminium-coated reflector film to the inner wall of photocatalytic reactor system, the removal efficiencies of ethanol and toluene increased by 5% to be 15% and 25%, respectively. In case of photocatalytic reactor system (2), at the 1st stage of its run, the removal efficiencies of ethanol, hydrogen sulfide and toluene continued to be 10%, 97% and 100%, respectively. However, at 2nd stage of its run their removal efficiencies became 5%, 95% and 2~3%, respectively, which showed that the removal efficiencies of ethanol and hydrogen sulfide decreased insignificantly while the removal efficiency of toluene dropped significantly from the perfect elimination. Moreover, the reflector film did not affect the performance of photocatalytic reactor system (2) at all. Therefore the removal of ethanol, hydrogen sulfide and toluene by photocatalytic reactor system (2) was mainly attributed to hydrophobic adsorption of its nonwoven filter media and its extent of photocatalytic removal turned out to be negligible, compared to that of photocatalytic reactor system (1).

Development of Portable Preconcentration-Gas Chromatography System for Fast Analysis of Trace Benzene, Toluene and Xylene in Air (대기 중 극미량의 벤젠, 톨루엔 및 자일렌의 신속한 분석을 위한 휴대용 농축-기체 크로마토크래피 시스템 개발)

  • Jung, Young-Rim;Kim, Man-Goo
    • Analytical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.432-441
    • /
    • 2001
  • An automated on-line portable preconcentration-short column gas chromatograph was developed, which used preconcentrator using adsorption tube with Tenax-GR and Curie-point heating. The developed system operated with 3 steps of processing, preconcentration, thermal desorption, and analysis and cleaning, and could continued operating within 1~2 min cycle. The recoveries of preconcentrator for toluene was ranged between $94.7{\pm}6.6%$ and $103.8{\pm}3.1%$ with less than 7% of RSD. For benzene, toluene and xylene(BTX) standard gas test, IDL was 41, 49, $472ng/m^3$ benzene, toluene and o-xylene, respectively. The BTX mixture was analyzed within 30 sec with baseline separation by the system equipped with 4 m long capillary column. The deficiency of separation power caused by short column was solved by the control of sample injection volume and inlet/outlet pressure ratio. The automated portable preconcentration-short column gas chromatograph system was found to be useful for the continuous air monitoring of BTX at ppb levels in ambient air.

  • PDF

Adsorption Properties of Demineralized Activated Carbon (세정 활성탄의 흡착특성)

  • 김정열;신창호;서문원;김영호;이근희;지상운
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.18 no.1
    • /
    • pp.85-91
    • /
    • 1996
  • Commercially available activated carbon was treated with 0.2N NaOH/0.1N HCl to decrease the ash contents and to analyze the effect of demineralization. We have studied their properties and adsorptivity to solvents such as benzene, acetone, toluene and carbon tetrachloride, ammonia and also aldehydes of cigarette smoke. By demineralization with NaOH/HCl, surface area and pore volume were increased up to 10 - 20% according to developement of micro-pore and pH of activated carbon was also changed from 10.2 to 6.3. Surface acidity of the activated carbon treated with chemicals increased slightly. The chemical treatment led to small increase in adsorptioil properties of solvents, ammonia and aldehydes of cigarette smoke, but content of chlorine and sulfur in activated carbon were reduced. As the results of smoking test, charcoal taste caused by the activated carbon was reduced significantly by the treatment with NaOH/HCl.

  • PDF

Catalytic CO Oxidation Over Ni Films Supported by Carbon Fiber

  • Seo, Hyun-Ook;Nam, Jong-Won;Kim, Kwang-Dae;Kim, Young-Dok;Lim, Dong-Chan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.266-266
    • /
    • 2012
  • Ni films with a thickness of 700-800 nm were deposited on carbon fiber layers using electroless deposition, and surface structures and chemical properties of these films with various annealing temperatures (300, 600 and $900^{\circ}C$) were studied. $600^{\circ}C$-annealing under atmospheric conditions resulted in formation of porous surface structures with a mean pore size of ~100 nm, whereas the other samples showed non-porous surface structures. $600^{\circ}C$-annealed Ni film showed much higher reactivities for toluene adsorption and CO oxidation comparing to other non-porous surfaces.

  • PDF

A Study on Cleaning Process for Benzene Recovery in Activated Carbon Bed (활성탄을 충전한 흡착탑에서 벤젠 회수를 위한 세정공정의 연구)

  • Kang, Sung-Won;Min, Byong-Hoon;Suh, Sung-Sup
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.108-116
    • /
    • 2002
  • Experimental Study was carried out for benzene desorption by purge gas or evacuation in an activated carbon bed. As purge gas flow rate increased, desorption rate increased due to the higher interstitial linear gas velocity. For various purge gas flow rates, desoption curves almost got together if they were plotted against dimensionless time. At a higher flow rate, mass transfer zone became narrower. Temperature drop in the bed was more fast and severe at higher flow rates and higher outer temperature. It was found out that desorption was almost completed when the temperature in the drop of the bed returned to the initial temperature before temperature drop. Desorption by vacuum purge was completed in shorter time than desorption by purge gas. Countercurrent purge was more effective than cocurrent purge.

The Measurements of Thermodynamic Properties for the Solute Transfer in RPLC with a $C_{18}$ Stationary Phase ($C_{18}$ 정지상으로 구성된 역상 액체 크로마토그래피에서 용질전이의 열역학적 특성측정)

  • Cheong, Won Jo;Kang, Young Ryul;Kang, Gyoung Won;Keum, Young Ik
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.6
    • /
    • pp.656-662
    • /
    • 1999
  • We have obtained retention data of benzene, toluene, ethylbenzene, phenol, and acetophenone at 25, 30, 35, 40, 45 and 50 $^{\circ}C$ in 30/70, 40/60, 50/50, 60/40, 70/30, and 80/20 (v/v %) methanol/water eluents using a $C_18$ phase with a high ligand density. We drew van't Hoff plots from the data, and computed enthalpies and entropies of solute transfer from the mobile to the stationary phase. The cavity formation effect was found the major factor that governs the solute distribution between the mobile and stationary phases. The hydrophobic effect became significant in highly aqueous mobile phases. We also concluded that the Shodex C18-5B stationary phase was a polymer-like phase with a high ligand density, and followed a partially adsorption-like mechanism.

  • PDF