SF-P003

Catalytic CO Oxidation Over Ni Films Supported by Carbon Fiber

Hyun Ook Seo¹, Jong Won Nam¹, Kwang-Dae Kim¹, Young Dok Kim^{1,*}, Dong Chan Lim²

¹Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, Korea, ²Materials Processing Division, Korea Institute of Materials Science, Changwon, 641-010, Korea

Ni films with a thickness of 700-800 nm were deposited on carbon fiber layers using electroless deposition, and surface structures and chemical properties of these films with various annealing temperatures (300, 600 and 900° C) were studied. 600° C-annealing under atmospheric conditions resulted in formation of porous surface structures with a mean pore size of ~ 100 nm, whereas the other samples showed non-porous surface structures. 600° C-annealed Ni film showed much higher reactivities for toluene adsorption and CO oxidation comparing to other non-porous surfaces.

Keywords: CO oxidation, Ni, Carbon fiber, Porous structures