• Title/Summary/Keyword: toll-like receptor 4 (TLR4)

Search Result 188, Processing Time 0.029 seconds

Immunological Mechanisms by Which Concomitant Helminth Infections Predispose to the Development of Human Tuberculosis

  • Mendez-Samperio, Patricia
    • Parasites, Hosts and Diseases
    • /
    • v.50 no.4
    • /
    • pp.281-286
    • /
    • 2012
  • Helminthic infections afflict over 1.5 billion people worldwide, while Mycobacterium tuberculosis infects one third of the world's population, resulting in 2 million deaths per year. Although tuberculosis and helminthic infections coexist in many parts of the world, and it has been demonstrated that the T-helper 2 and T-regulatory cell responses elicited by helminths can affect the ability of the host to control mycobacterial infection, it is still unclear whether helminth infections in fact affect tuberculosis disease. In this review article, current progress in the knowledge about the immunomodulation induced by helminths to diminish the protective immune responses to bacille Calmette-Guerin vaccination is reviewed, and the knowledge about the types of immune responses modulated by helminths and the consequences for tuberculosis are summarized. In addition, recent data supporting the significant reduction of both M. tuberculosis antigen-specific Toll-like receptor (TLR) 2 and TLR9 expression, and pro-inflammatory cytokine responses to TLR2 and TLR9 ligands in individuals with M. tuberculosis and helminth co-infection were discussed. This examination will allow to improve understanding of the immune responses to mycobacterial infection and also be of great relevance in combating human tuberculosis.

Curcumin Inhibits MHCC97H Liver Cancer Cells by Activating ROS/TLR-4/Caspase Signaling Pathway

  • Li, Pei-Min;Li, Yu-Liang;Liu, Bin;Wang, Wu-Jie;Wang, Yong-Zheng;Li, Zheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.2329-2334
    • /
    • 2014
  • Curcumin can inhibit proliferation of liver cancer cells by inducing apoptosis, but the specific signaling pathways involved are not completely clear. Here, we report that curcumin inhibited proliferation of MHCC97H liver cancer cells by induction of apoptosis in a concentration dependent manner via stimulating intracellular reactive oxygen species (ROS) generation. Also, we showed that increased intracellular ROS formation activated the TLR-4/MyD-88 signaling pathway, resulting in activation of caspase-8 and caspase-3, which eventually led to apoptosis in MHCC97H cells. These results showed that as an prooxidant, curcumin exerts anti-cancer effects by inducing apoptosis via the TLR-4/MyD-88 signaling pathway.

Shigyungbanha-tang Exhibits Anti-inflammatory Effects by Inhibiting $I{\kappa}B-{\alpha}$ Degradation in LPS-stimulated Peritoneal Macrophages (LPS로 유도한 복강대식세포에서 $I{\kappa}B-{\alpha}$ 분해억제에 의한 시경반하탕(柴梗半夏湯)의 항염증효과)

  • Shin, Jo-Young;Lee, Si-Hyeong;Lee, Seung-Eon
    • The Journal of Internal Korean Medicine
    • /
    • v.28 no.3
    • /
    • pp.442-452
    • /
    • 2007
  • Objectives : The purpose of this study was to investigate the toll-like receptor (TLR)-4 mediated anti-inflammatory effects of extract from Shigyungbanha-tang (SBT) on the peritoneal macrophage. Methods : To evaluate of TLR-4 mediated inflammatory of SBT. we examined NO and cytokine production in TRL-4 ligand (LPS : lipopolysaccharide) induced macrophages. Furthermore, we examined its molecular mechanism using western blot. Results : Extract from SBT itself does not have any cytotoxic effect in the peritoneal macrophages. Extract from SBT reduced LPS-induced nitric oxide (NO). tumor necrosis factor-alpha ($TNF-{\alpha}$), interleukin (IL)-6 and IL-12 production in peritoneal macrophages. SBT inhibited degradation of inhibitor kappa B-alpha ($I{\kappa}B-{\alpha}$) in the TLR-4 mediated peritoneal macrophages. Conclusions : These results suggest that SBT inhibits NO and cytokines production through inhibiting nuclear factor-kappaB (NF-${\kappa}$B) activation in peritoneal macrophage and that SBT may be beneficial oriental medicine for inflammation.

  • PDF

Echinacea purpurea extract inhibits LPS-induced inflammatory response by interfering with TLR4-mediated NF-κB and MAPKs signaling pathways

  • Kim, Hae Lim;Min, Daeun;Lee, Sung-Kwon;Choi, Bong-Keun;Lee, Hae Jin;Lee, Dong-Ryung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.36 no.1
    • /
    • pp.28-34
    • /
    • 2022
  • Echinacea purpurea (Asteraceae family) is widely used in the European countries and the United States due to its proven immune enhancement and anti-inflammatory effects. Echinacea purpurea has been reported prevent and treat upper respiratory tract infections and common cold, but the underlying molecular mechanisms are not well understood. In the present study, we examined the anti-inflammatory effects and molecular mechanisms of Echinacea purpurea (EP) extract using lipopolysaccharide (LPS)-stimulated signal pathways in RAW264.7 cells. Our results suggest that EP extract exerts anti-inflammatory effects by down-regulating the expression of LPS-induced toll-like receptor 4 (TLR4), subsequently inhibiting the activation of nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signaling pathways and suppression of the release of pro-inflammatory cytokines. These results suggest that EP extract is a potential therapeutic agent for inflammatory diseases.

Lysate of Probiotic Lactobacillus plantarum K8 Modulate the Mucosal Inflammatory System in Dextran Sulfate Sodium-induced Colitic Rats

  • Ahn, Young-Sook;Park, Min Young;Shin, Jae-Ho;Kim, Ji Yeon;Kwon, Oran
    • Food Science of Animal Resources
    • /
    • v.34 no.6
    • /
    • pp.829-835
    • /
    • 2014
  • Inflammatory bowel disease (IBD) is caused by dysregulation of colon mucosal immunity and mucosal epithelial barrier function. Recent studies have reported that lipoteichoic acid (LTA) from Lactobacillus plantarum K8 reduces excessive production of pro-inflammatory cytokine. In this study, we investigated the preventive effects of lysate of Lb. plantarum K8 in dextran sulfate sodium (DSS)-induced colitis. Male Sprague-Dawley rats were orally pretreated with lysate of Lb. plantarum K8 (low dose or high dose) or live Lb. plantarum K8 prior to the induction of colitis using 4% DSS. Disease progression was monitored by assessment of disease activity index (DAI). Histological changes of colonic tissues were evaluated by hematoxylin and eosin (HE) staining. Tumor necrosis factor-alpha (TNF-${\alpha}$), interleukin-6 (IL-6) levels were measured using enzyme-linked immunosorbent assay (ELISA). The colon mRNA expressions of TNF-${\alpha}$, IL-6, and toll like receptor-2 (TLR-2) were examined by quantitative real-time-transcription polymerase chain reaction (qPCR). Lysate of Lb. plantarum K8 suppressed colon shortening, edema, mucosal damage, and the loss of DSS-induced crypts. The groups that received lysate of Lb. plantarum K8 exhibited significantly decreased levels of the pro-inflammatory cytokines TNF-${\alpha}$ and IL-6 in the colon. Interestingly, colonic expression of toll like receptor-2 mRNA in the high-dose lysate of Lb. plantarum K8 group increased significantly. Our study demonstrates the protective effects of oral lysate of Lb. plantarum K8 administration on DSS-induced colitis via the modulation of pro-inflammatory mediators of the mucosal immune system.

Aloe-emodin inhibits Pam3CSK4-induced MAPK and NF-κB signaling through TLR2 in macrophages

  • Lee, Mi Jin;Park, Mi-Young;Kim, Soon-Kyung
    • Journal of Nutrition and Health
    • /
    • v.49 no.4
    • /
    • pp.241-246
    • /
    • 2016
  • Purpose: Aloe-emodin (AE), an ingredient of aloe, is known to exhibit anti-inflammatory activities. However, little is known about the underlying molecular mechanisms of its inflammatory modulatory activity in vitro. In the present study, we investigated the anti-inflammatory potential of AE using $Pam_3CSK_4$-stimulated macrophages. Methods: RAW 264.7 macrophages were treated with AE (0~20 mM) for 1 h, followed by treatment with $Pam_3CSK_4$ for 1 h. After incubation, mRNA expression levels of cytokines were measured. The effect of AE on TLR2-related molecules was also investigated in $Pam_3CSK_4$-stimulated RAW 264.7 macrophages. Results: AE attenuated $Pam_3CSK_4$-stimulated expression of proinflammatory cytokines, including tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-6 (IL-6), and interleukin-$1{\beta}$ ($IL-1{\beta}$) in RAW 264.7 macrophages. Two concentrations of AE ($10{\mu}M$ and $20{\mu}M$) effectively reduced mRNA expression of TLR2 by 41.18% and 54.43%, respectively, compared to that in control cells (p < 0.05). AE also decreased nuclear factor-kappa B ($NF-{\kappa}B$) activation and mitogen-activated protein kinase (MAPK) phosphorylation. Phosphorylation levels of ERK1/2, p38, and JNK were markedly reduced by $20{\mu}M$ AE. In particular, AE decreased phosphorylation of ERK in a dose-dependent manner in $Pam_3CSK_4$-stimulated RAW 264.7 macrophages. Conclusion: Our data indicate that AE exerts its anti-inflammatory effect by suppressing TLR2-mediated activation of $NF-{\kappa}B$ and MAPK signaling pathways in macrophages.

Immune Response to Koi Herpesvirus (KHV) of Koi and Koi × Red Common Carp (Cyprinus carpio)

  • Hwang, Ju-ae;Kim, Jung Eun;Kim, Hyeong-su;Lee, Jeong-Ho
    • Development and Reproduction
    • /
    • v.21 no.4
    • /
    • pp.361-370
    • /
    • 2017
  • Koi herpesvirus (KHV), also known as Cyprinid herpes virus 3 (Cyprinid 3) is lethal disease in common carp and koi (Cyprinus carpio). Two different groups (KK and RK) were infected KHV by intraperitoneal injection. Fish for gene expression analysis were sampled at 0 h, 12 h, 24 h, 48 h and 72 h post infection (p.i). The results showed that two immune related gene, Interferons (INFs) ${\alpha}{\beta}$ and Interleukin (IL)-12 p35 induced a high response in RK. The IL-12 p35 cytokine and Toll-like receptor (TLR) 9 were significantly high expressed on 48 h post infection (p.i) in RK as compared to the KK. The histopatological examination reveals focal necrosis in liver and infiltrate of lymphocytes in spleen of KK as compared to the RK. In immunohistochemistry analysis, the KHV protein high expressed in the infected kidney cell and slenocyte of KK. Therefore, the expression of IL-12 p35, IFN ${\alpha}{\beta}$ and TLR 9 may provide a potentially genes related with KHV resistance in Koi and red common carp ${\times}$ koi.

Carpomitra costata Extract Alleviates Lipopolysaccharide-induced Neuroinflammatory Responses in BV2 Microglia through the Inactivation of NF-κB Associated with the Blockade of the TLR4 Pathway and ROS Generation

  • Park, Cheol;Cha, Hee-Jae;Hong, Su-Hyun;Kim, Suhkmann;Kim, Heui-Soo;Choi, Yung Hyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.29-39
    • /
    • 2020
  • In this study, we investigated the inhibitory potential of an ethanol extract of Carpomitra costata (EECC) (Stackhouse) Batters, a brown alga, against neuroinflammatory responses in lipopolysaccharide (LPS)-stimulated BV2 microglia. Our results showed that EECC significantly suppressed the LPS-induced secretion of pro-inflammatory mediators, including nitric oxide (NO) and prostaglandin E2, with no significant cytotoxic effects. EECC also inhibited the LPS-induced expression of their regulatory enzymes, such as inducible NO synthase and cyclooxygenase-2. In addition, EECC downregulated the LPS-induced expression and production of the proinflammatory cytokines, tumor necrosis factor-α and interleukin-1β. In the mechanistic assessment of the antineuroinflammatory effects, EECC was found to inhibit the nuclear translocation and DNA binding of nuclear factor-kappa B (NF-κB) by disrupting the degradation of the κB-α inhibitor in the cytoplasm. Moreover, EECC effectively suppressed the enhanced expression of Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88, as well as the binding of LPS to TLR4 in LPS-treated BV2 cells. Furthermore, EECC markedly reduced the LPS-induced generation of reactive oxygen species (ROS), demonstrating a strong antioxidative effect. Collectively, these results suggest that EECC repressed LPS-mediated inflammatory action in the BV2 microglia through the inactivation of NF-κB signaling by antagonizing TLR4 and/or preventing ROS accumulation. While further studies are needed to fully understand the anti-inflammatory effects associated with the antioxidant activity of EECC, the current findings suggest that EECC has a potential advantage in inhibiting the onset and treatment of neuroinflammatory diseases.

Flagellin-Stimulated Production of Interferon-β Promotes Anti-Flagellin IgG2c and IgA Responses

  • Kang, Wondae;Park, Areum;Huh, Ji-Won;You, Gihoon;Jung, Da-Jung;Song, Manki;Lee, Heung Kyu;Kim, You-Me
    • Molecules and Cells
    • /
    • v.43 no.3
    • /
    • pp.251-263
    • /
    • 2020
  • Flagellin, a major structural protein of the flagellum found in all motile bacteria, activates the TLR5- or NLRC4 inflammasome-dependent signaling pathway to induce innate immune responses. Flagellin can also serve as a specific antigen for the adaptive immune system and stimulate anti-flagellin antibody responses. Failure to recognize commensal-derived flagellin in TLR5-deficient mice leads to the reduction in anti-flagellin IgA antibodies at steady state and causes microbial dysbiosis and mucosal barrier breach by flagellated bacteria to promote chronic intestinal inflammation. Despite the important role of anti-flagellin antibodies in maintaining the intestinal homeostasis, regulatory mechanisms underlying the flagellin-specific antibody responses are not well understood. In this study, we show that flagellin induces interferon-β (IFN-β) production and subsequently activates type I IFN receptor signaling in a TLR5- and MyD88-dependent manner in vitro and in vivo. Internalization of TLR5 from the plasma membrane to the acidic environment of endolysosomes was required for the production of IFN-β, but not for other pro-inflammatory cytokines. In addition, we found that anti-flagellin IgG2c and IgA responses were severely impaired in interferon-alpha receptor 1 (IFNAR1)-deficient mice, suggesting that IFN-β produced by the flagellin stimulation regulates anti-flagellin antibody class switching. Our findings shed a new light on the regulation of flagellin-mediated immune activation and may help find new strategies to promote the intestinal health and develop mucosal vaccines.

Cytochalasin B Modulates Macrophage-Mediated Inflammatory Responses

  • Kim, Mi-Yeon;Kim, Jong-Hoon;Cho, Jae Youl
    • Biomolecules & Therapeutics
    • /
    • v.22 no.4
    • /
    • pp.295-300
    • /
    • 2014
  • The actin cytoskeleton plays an important role in macrophage-mediated inflammatory responses by modulating the activation of Src and subsequently inducing nuclear factor (NF)-${\kappa}B$ translocation. In spite of its critical functions, few papers have examined how the actin cytoskeleton can be regulated by the activation of toll-like receptor (TLR). Therefore, in this study, we further characterized the biological value of the actin cytoskeleton in the functional activation of macrophages using an actin cytoskeleton disruptor, cytochalasin B (Cyto B), and explored the actin cytoskeleton's involvement in morphological changes, cellular attachment, and signaling events. Cyto B strongly suppressed the TLR4-mediated mRNA expression of inflammatory genes such as cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-${\alpha}$, and inducible nitric oxide (iNOS), without altering cell viability. This compound also strongly suppressed the morphological changes induced by lipopolysaccharide (LPS), a TLR4 ligand. Cyto B also remarkably suppressed NO production under non-adherent conditions but not in an adherent environment. Cyto B did not block the co-localization between surface glycoprotein myeloid differentiation protein-2 (MD2), a LPS signaling glycoprotein, and the actin cytoskeleton under LPS conditions. Interestingly, Cyto B and PP2, a Src inhibitor, enhanced the phagocytic uptake of fluorescein isothiocyanate (FITC)-dextran. Finally, it was found that Cyto B blocked the phosphorylation of vasodilator-stimulated phosphoprotein (VASP) at 1 min and the phosphorylation of heat shock protein 27 (HSP27) at 5 min. Therefore, our data suggest that the actin cytoskeleton may be one of the key components involved in the control of TLR4-mediated inflammatory responses in macrophages.