DOI QR코드

DOI QR Code

Cytochalasin B Modulates Macrophage-Mediated Inflammatory Responses

  • Kim, Mi-Yeon (Department of Bioinformatics and Life Science, Soongsil University) ;
  • Kim, Jong-Hoon (Department of Veterinary Physiology, College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University) ;
  • Cho, Jae Youl (Department of Genetic Engineering, Sungkyunkwan University)
  • Received : 2014.05.12
  • Accepted : 2014.06.10
  • Published : 2014.07.31

Abstract

The actin cytoskeleton plays an important role in macrophage-mediated inflammatory responses by modulating the activation of Src and subsequently inducing nuclear factor (NF)-${\kappa}B$ translocation. In spite of its critical functions, few papers have examined how the actin cytoskeleton can be regulated by the activation of toll-like receptor (TLR). Therefore, in this study, we further characterized the biological value of the actin cytoskeleton in the functional activation of macrophages using an actin cytoskeleton disruptor, cytochalasin B (Cyto B), and explored the actin cytoskeleton's involvement in morphological changes, cellular attachment, and signaling events. Cyto B strongly suppressed the TLR4-mediated mRNA expression of inflammatory genes such as cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-${\alpha}$, and inducible nitric oxide (iNOS), without altering cell viability. This compound also strongly suppressed the morphological changes induced by lipopolysaccharide (LPS), a TLR4 ligand. Cyto B also remarkably suppressed NO production under non-adherent conditions but not in an adherent environment. Cyto B did not block the co-localization between surface glycoprotein myeloid differentiation protein-2 (MD2), a LPS signaling glycoprotein, and the actin cytoskeleton under LPS conditions. Interestingly, Cyto B and PP2, a Src inhibitor, enhanced the phagocytic uptake of fluorescein isothiocyanate (FITC)-dextran. Finally, it was found that Cyto B blocked the phosphorylation of vasodilator-stimulated phosphoprotein (VASP) at 1 min and the phosphorylation of heat shock protein 27 (HSP27) at 5 min. Therefore, our data suggest that the actin cytoskeleton may be one of the key components involved in the control of TLR4-mediated inflammatory responses in macrophages.

Keywords

References

  1. Coppolino, M. G., Krause, M., Hagendorff, P., Monner, D. A., Trimble, W., Grinstein, S., Wehland, J. and Sechi, A. S. (2001) Evidence for a molecular complex consisting of Fyb/SLAP, SLP-76, Nck, VASP and WASP that links the actin cytoskeleton to Fcgamma receptor signalling during phagocytosis. J. Cell Sci. 114, 4307-4318.
  2. Diesel, B., Hoppstadter, J., Hachenthal, N., Zarbock, R., Cavelius, C., Wahl, B., Thewes, N., Jacobs, K., Kraegeloh, A. and Kiemer, A. K. (2013) Activation of Rac1 GTPase by nanoparticulate structures in human macrophages. Eur. J. Pharm. Biopharm. 84, 315-324. https://doi.org/10.1016/j.ejpb.2012.12.015
  3. Disanza, A., Steffen, A., Hertzog, M., Frittoli, E., Rottner, K. and Scita, G. (2005) Actin polymerization machinery: the finish line of signaling networks, the starting point of cellular movement. Cell. Mol. Life Sci. 62, 955-970. https://doi.org/10.1007/s00018-004-4472-6
  4. Duperrier, K., Eljaafari, A., Dezutter-Dambuyant, C., Bardin, C., Jacquet, C., Yoneda, K., Schmitt, D., Gebuhrer, L. and Rigal, D. (2000) Distinct subsets of dendritic cells resembling dermal DCs can be generated in vitro from monocytes, in the presence of different serum supplements. J. Immunol. Methods 238, 119-131. https://doi.org/10.1016/S0022-1759(00)00147-2
  5. Frleta, D., Noelle, R. J. and Wade, W. F. (2003) CD40-mediated upregulation of Toll-like receptor 4-MD2 complex on the surface of murine dendritic cells. J. Leukoc. Biol. 74, 1064-1073. https://doi.org/10.1189/jlb.0203062
  6. Gentry, B. S., van der Meulen, S., Noguera, P., Alonso-Latorre, B., Plastino, J. and Koenderink, G. H. (2012) Multiple actin binding domains of Ena/VASP proteins determine actin network stiffening. Eur. Biophys J. 41, 979-990. https://doi.org/10.1007/s00249-012-0861-1
  7. Gerlier, D. and Thomasset, N. (1986) Use of MTT colorimetric assay to measure cell activation. J. Immunol. Methods 94, 57-63. https://doi.org/10.1016/0022-1759(86)90215-2
  8. Huttelmaier, S., Harbeck, B., Steffens, O., Messerschmidt, T., Illenberger, S. and Jockusch, B. M. (1999) Characterization of the actin binding properties of the vasodilator-stimulated phosphoprotein VASP. FEBS Lett 451, 68-74. https://doi.org/10.1016/S0014-5793(99)00546-3
  9. Jeon, J. W., Park, B. C., Jung, J. G., Jang, Y. S., Shin, E. C. and Park, Y. W. (2013) The soluble form of the cellular prion protein enhances phagocytic activity and cytokine production by human monocytes via activation of ERK and NF-kappaB. Immune Netw. 13, 148-156. https://doi.org/10.4110/in.2013.13.4.148
  10. Kim, J., Kang, D., Sun, B. K., Kim, J. H. and Song, J. J. (2013a) TRAIL/MEKK4/p38/HSP27/Akt survival network is biphasically modulated by the Src/CIN85/c-Cbl complex. Cell. Signal. 25, 372-379. https://doi.org/10.1016/j.cellsig.2012.10.010
  11. Kim, J. Y., Lee, Y. G., Kim, M. Y., Byeon, S. E., Rhee, M. H., Park, J., Katz, D. R., Chain, B. M. and Cho, J. Y. (2010) Src-mediated regulation of infl ammatory responses by actin polymerization. Biochem. Pharmacol. 79, 431-443. https://doi.org/10.1016/j.bcp.2009.09.016
  12. Kim, M., Li, Y. X., Dewapriya, P., Ryu, B. and Kim, S. K. (2013b) Floridoside suppresses pro-inflammatory responses by blocking MAPK signaling in activated microglia. BMB Rep. 46, 398-403. https://doi.org/10.5483/BMBRep.2013.46.8.237
  13. Kim, M. Y. and Cho, J. Y. (2013a) 20S-dihydroprotopanaxadiol, a ginsenoside derivative, boosts innate immune responses of monocytes and macrophages. J. Ginseng. Res. 37, 293-299. https://doi.org/10.5142/jgr.2013.37.293
  14. Kim, M. Y. and Cho, J. Y. (2013b) 20S-dihydroprotopanaxatriol modulates functional activation of monocytes and macrophages. J. Ginseng Res. 37, 300-307. https://doi.org/10.5142/jgr.2013.37.300
  15. Kustermans, G., Piette, J. and Legrand-Poels, S. (2008) Actin-targeting natural compounds as tools to study the role of actin cytoskeleton in signal transduction. Biochem. Pharmacol. 76, 1310-1322. https://doi.org/10.1016/j.bcp.2008.05.028
  16. Lee, J. J., Kim, D. H., Kim, D. G., Lee, H. J., Min, W., Rhee, M. H., Cho, J. Y., Watarai, M. and Kim, S. (2013) Toll-like receptor 4-linked Janus kinase 2 signaling contributes to internalization of Brucella abortus by macrophages. Infect. Immun. 81, 2448-2458. https://doi.org/10.1128/IAI.00403-13
  17. Lee, Y. G., Chain, B. M. and Cho, J. Y. (2009) Distinct role of spleen tyrosine kinase in the early phosphorylation of inhibitor of kappaB alpha via activation of the phosphoinositide-3-kinase and Akt pathways. Int. J. Biochem. Cell Biol. 41, 811-821. https://doi.org/10.1016/j.biocel.2008.08.011
  18. Lee, Y. G., Lee, W. M., Kim, J. Y., Lee, J. Y., Lee, I. K., Yun, B. S., Rhee, M. H. and Cho, J. Y. (2008) Src kinase-targeted anti-infl ammatory activity of davallialactone from Inonotus xeranticus in lipopolysaccharide-activated RAW264.7 cells. Br. J. Pharmacol. 154, 852-863.
  19. Malyshev, I. Y. and Shnyra, A. (2003) Controlled modulation of infl ammatory, stress and apoptotic responses in macrophages. Curr. Drug Targets Immune. Endocr. Metabol. Disord. 3, 1-22.
  20. Nakanishi-Matsui, M., Yano, S. and Futai, M. (2013) Lipopolysaccharide-induced multinuclear cells: increased internalization of polystyrene beads and possible signals for cell fusion. Biochem. Biophys. Res. Commun. 440, 611-616. https://doi.org/10.1016/j.bbrc.2013.09.109
  21. Oikawa, T., Okamura, H., Dietrich, F., Senju, Y., Takenawa, T. and Suetsugu, S. (2013) IRSp53 mediates podosome formation via VASP in NIH-Src cells. PLoS One 8, e60528. https://doi.org/10.1371/journal.pone.0060528
  22. Qureshi, N., Vogel, S. N., Van Way, C., 3rd, Papasian, C. J., Qureshi, A. A. and Morrison, D. C. (2005) The proteasome: a central regulator of inflammation and macrophage function. Immunol. Res. 31, 243-260. https://doi.org/10.1385/IR:31:3:243
  23. Schneider, G. B., Hamano, H. and Cooper, L. F. (1998) In vivo evaluation of hsp27 as an inhibitor of actin polymerization: hsp27 limits actin stress fiber and focal adhesion formation after heat shock. J. Cell. Physiol. 177, 575-584. https://doi.org/10.1002/(SICI)1097-4652(199812)177:4<575::AID-JCP8>3.0.CO;2-1
  24. Seo, B. S., Lee, S. H., Lee, J. E., Yoo, Y. C., Lee, J. and Park, S. R. (2013) Dectin-1 stimulation selectively reinforces LPS-driven IgG1 production by mouse B Cells. Immune Netw. 13, 205-212. https://doi.org/10.4110/in.2013.13.5.205
  25. Sohn, S. H., Kim, S. K., Kim, Y. O., Kim, H. D., Shin, Y. S., Yang, S. O., Kim, S. Y. and Lee, S. W. (2013) A comparison of antioxidant activity of Korean White and Red Ginsengs on H2O2-induced oxidative stress in HepG2 hepatoma cells. J. Ginseng Res. 37, 442-450. https://doi.org/10.5142/jgr.2013.37.442
  26. Sutovsky, P., Flechon, J. E. and Pavlok, A. (1994) Microfi laments, microtubules and intermediate filaments fulfi l differential roles during gonadotropin-induced expansion of bovine cumulus oophorus. Reprod. Nutr. Dev. 34, 415-425. https://doi.org/10.1051/rnd:19940503
  27. Wang, P. and Bitar, K. N. (1998) Rho A regulates sustained smooth muscle contraction through cytoskeletal reorganization of HSP27. Am. J. Physiol. 275, G1454-1462.

Cited by

  1. New bioactive compounds from aquatic endophyte Chaetomium globosum 2017, https://doi.org/10.1080/14786419.2017.1378210
  2. Endocytotic Uptake of Zoledronic Acid by Tubular Cells May Explain Its Renal Effects in Cancer Patients Receiving High Doses of the Compound vol.10, pp.3, 2015, https://doi.org/10.1371/journal.pone.0121861
  3. 1-(2,3-Dibenzimidazol-2-ylpropyl)-2-methoxybenzene Is a Syk Inhibitor with Anti-Inflammatory Properties vol.21, pp.4, 2016, https://doi.org/10.3390/molecules21040508
  4. Pro-Apoptotic Activity of 4-Isopropyl-2-(1-Phenylethyl) Aniline Isolated from Cordyceps bassiana vol.23, pp.4, 2015, https://doi.org/10.4062/biomolther.2015.021
  5. Transcriptional response networks for elucidating mechanisms of action of multitargeted agents vol.21, pp.7, 2016, https://doi.org/10.1016/j.drudis.2016.03.001
  6. Src/Syk/IRAK1-targeted anti-inflammatory action of Torreya nucifera butanol fraction in lipopolysaccharide-activated RAW264.7 cells vol.188, 2016, https://doi.org/10.1016/j.jep.2016.05.008
  7. MAPK/AP-1-Targeted Anti-Inflammatory Activities of Xanthium strumarium vol.44, pp.06, 2016, https://doi.org/10.1142/S0192415X16500622
  8. Isorhamnetin Inhibits Reactive Oxygen Species-Dependent Hypoxia Inducible Factor (HIF)-1α Accumulation vol.39, pp.11, 2016, https://doi.org/10.1248/bpb.b16-00414
  9. vol.33, pp.4, 2017, https://doi.org/10.5487/TR.2017.33.4.325
  10. Targeted Delivery of a Ligand-Drug Conjugate via Formyl Peptide Receptor 1 through Cholesterol-Dependent Endocytosis vol.16, pp.6, 2014, https://doi.org/10.1021/acs.molpharmaceut.9b00188
  11. Mechanobiology of Macrophages: How Physical Factors Coregulate Macrophage Plasticity and Phagocytosis vol.21, pp.None, 2019, https://doi.org/10.1146/annurev-bioeng-062117-121224
  12. Antioxidative and Neuroprotective Effects of the Cytochalasans From Endophytes vol.15, pp.4, 2014, https://doi.org/10.1177/1934578x20917308
  13. The Anti-Cancer Effect of Linusorb B3 from Flaxseed Oil through the Promotion of Apoptosis, Inhibition of Actin Polymerization, and Suppression of Src Activity in Glioblastoma Cells vol.25, pp.24, 2020, https://doi.org/10.3390/molecules25245881
  14. Cells nanomechanics by atomic force microscopy: focus on interactions at nanoscale vol.6, pp.1, 2014, https://doi.org/10.1080/23746149.2020.1866668
  15. Phagocytosis and activation of bone marrow‐derived macrophages by Plasmodium falciparum gametocytes vol.20, pp.1, 2014, https://doi.org/10.1186/s12936-021-03589-2
  16. Minimizing the negative charge of Alginate facilitates the delivery of negatively charged molecules inside cells vol.29, pp.1, 2014, https://doi.org/10.1007/s10965-021-02813-6