• Title/Summary/Keyword: toll-like receptor 2

Search Result 195, Processing Time 0.022 seconds

Systems Biological Approaches Reveal Non-additive Responses and Multiple Crosstalk Mechanisms between TLR and GPCR Signaling

  • Krishnan, Jayalakshmi;Choi, Sang-Dun
    • Genomics & Informatics
    • /
    • v.10 no.3
    • /
    • pp.153-166
    • /
    • 2012
  • A variety of ligands differ in their capacity to bind the receptor, elicit gene expression, and modulate physiological responses. Such receptors include Toll-like receptors (TLRs), which recognize various patterns of pathogens and lead to primary innate immune activation against invaders, and G-protein coupled receptors (GPCRs), whose interaction with their cognate ligands activates heterotrimeric G proteins and regulates specific downstream effectors, including immuno-stimulating molecules. Once TLRs are activated, they lead to the expression of hundreds of genes together and bridge the arm of innate and adaptive immune responses. We characterized the gene expression profile of Toll-like receptor 4 (TLR4) in RAW 264.7 cells when it bound with its ligand, 2-keto-3-deoxyoctonate (KDO), the active part of lipopolysaccharide. In addition, to determine the network communications among the TLR, Janus kinase (JAK)/signal transducer and activator of transcription (STAT), and GPCR, we tested RAW 264.7 cells with KDO, interferon-${\beta}$, or cAMP analog 8-Br. The ligands were also administered as a pair of double and triple combinations.

Gambogic Acid Disrupts Toll-like Receptor4 Activation by Blocking Lipopolysaccharides Binding to Myeloid Differentiation Factor 2

  • Lee, Jin Young;Lee, Byung Ho;Lee, Joo Young
    • Toxicological Research
    • /
    • v.31 no.1
    • /
    • pp.11-16
    • /
    • 2015
  • Our body's immune system has defense mechanisms against pathogens such as viruses and bacteria. Immune responses are primarily initiated by the activation of toll-like receptors (TLRs). In particular, TLR4 is well-characterized and is known to be activated by gram-negative bacteria and tissue damage signals. TLR4 requires myeloid differentiation factor 2 (MD2) as a co-receptor to recognize its ligand, lipopolysaccharides (LPS), which is an extracellular membrane component of gram-negative bacteria. Gambogic acid is a xanthonoid isolated from brownish or orange resin extracted from Garcinia hanburyi. Its primary effect is tumor suppression. Since inflammatory responses are related to the development of cancer, we hypothesized that gambogic acid may regulate TLR4 activation. Our results demonstrated that gambogic acid decreased the expression of pro-inflammatory cytokines ($TNF-{\alpha}$, IL-6, IL-12, and $IL-1{\beta}$) in both mRNA and protein levels in bone marrow-derived primary macrophages after stimulation with LPS. Gambogic acid did not inhibit the activation of Interferon regulatory factor 3 (IRF3) induced by TBK1 overexpression in a luciferase reporter gene assay using IFN-${\beta}$-PRD III-I-luc. An in vitro kinase assay using recombinant TBK1 revealed that gambogic acid did not directly inhibit TBK1 kinase activity, and instead suppressed the binding of LPS to MD2, as determined by an in vitro binding assay and confocal microscopy analysis. Together, our results demonstrate that gambogic acid disrupts LPS interaction with the TLR4/MD2 complex, the novel mechanism by which it suppresses TLR4 activation.

Cooperative Interactions between Toll-Like Receptor 2 and Toll-Like Receptor 4 in Murine Klebsiella pneumoniae Infections

  • Jeon, Hee-Yeon;Park, Jong-Hyung;Park, Jin-Il;Kim, Jun-Young;Seo, Sun-Min;Ham, Seung-Hoon;Jeong, Eui-Suk;Choi, Yang-Kyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.8
    • /
    • pp.1529-1538
    • /
    • 2017
  • Klebsiella pneumoniae is an opportunistic and clinically significant emerging pathogen. We investigated the relative roles of Toll-like receptor (TLR) 2 and TLR4 in initiating host defenses against K. pneumoniae. TLR2 knockout (KO), TLR4 KO, TLR2/4 double KO (DKO), and wild-type (WT) mice were inoculated with K. pneumoniae. Mice in each group were sacrificed after either 12 or 24h, and the lungs, liver, and blood were harvested to enumerate bacterial colony-forming units (CFU). Cytokine and chemokine levels were analyzed using enzyme-linked immunosorbent assay and real-time PCR, and pneumonia severity was determined by histopathological analysis. Survival was significantly shortened in TLR4 KO and TLR2/4 DKO mice compared with that of WT mice after infection with $5{\times}10^3CFU$. TLR2 KO mice were more susceptible to infection than WT mice after exposure to a higher infectious dose. Bacterial burdens in the lungs and liver were significantly higher in TLR2/4 DKO mice than in WT mice. Serum $TNF-{\alpha}$, MCP-1, MIP-2, and nitric oxide levels were significantly decreased in TLR2/4 DKO mice relative to those in WT mice, and TLR2/4 DKO mice showed significantly decreased levels of $TNF-{\alpha}$, IL-6, MCP-1, and inducible nitric oxide synthase mRNA in the lung compared with those in WT mice. Collectively, these data indicate that TLR2/4 DKO mice were more susceptible to K. pneumoniae infection than single TLR2 KO and TLR4 KO mice. These results suggest that TLR2 and TLR4 play cooperative roles in lung innate immune responses and bacterial dissemination, resulting in systemic inflammation during K. pneumoniae infection.

Anti-cancer and Anti-inflammatory Effects of Curcumin by the Modulation of Toll-like Receptor 2, 3 and 4 (Toll-like receptor 2, 3, 4의 신호전달체계 조절을 통한 curcumin의 항암${\cdot}$항염증 효과)

  • Kang, Soon-Ah;Hwang, Daniel;Youn, Hyung-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.175-180
    • /
    • 2007
  • Toll-like receptors induce innate immune responses recognizing conserved microbial structural molecules that are known as pathogen-associated molecular patterns (PAMPs). Ligand-induced homotypic oligomerization was found to proceed in LPS-induced activation of TLR4 signaling pathways. TLR2 is known to heterodimerize with TLR1 or TLR6 and recognize diacyl- or triacyl-lipopeptide, respectively. These results suggest that ligand-induced receptor dimerization of TLR4 and TLR2 is required for the activation of downstream signaling pathways. Therefore, receptor dimerization may be one of the first lines of regulation in the activation of TLR-mediated signaling pathways and induction of subsequent innate and adaptive immune responses. Here, we report biochemical evidence that curcumin from the plant Curcuma longa inhibits activation of $NF-{\kappa}B$, expression of COX-2, and dimerization of TLRs induced by TLR2, TLR3 and TLR4 agonists. These results imply that curcumin can modulate the activation of TLRs and subsequent immune/inflammatory responses induced by microbial pathogens.

TLR-1, TLR-2, and TLR-6 MYD88-dependent signaling pathway: A potential factor in the interaction of high-DNA fragmentation human sperm with fallopian tube epithelial cells

  • Zahra Zandieh;Azam Govahi;Azin Aghamajidi;Ehsan Raoufi;Fatemehsadat Amjadi;Samaneh Aghajanpour;Masoomeh Golestan;Reza Aflatoonian
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.50 no.1
    • /
    • pp.44-52
    • /
    • 2023
  • Objective: The DNA integrity of spermatozoa that attach to fallopian tube (FT) cells is higher than spermatozoa that do not attach. FT epithelial cells can distinguish normal and abnormal sperm chromatin. This study investigated the effects of sperm with a high-DNA fragmentation index (DFI) from men with unexplained repeated implantation failure (RIF) on the Toll-like receptor (TLR) signaling pathway in human FT cells in vitro. Methods: Ten men with a RIF history and high-DFI and 10 healthy donors with low-DFI comprised the high-DFI (>30%) and control (<30%) groups, respectively. After fresh semen preparation, sperm were co-cultured with a human FT epithelial cell line (OE-E6/E7) for 24 hours. RNA was extracted from the cell line and the human innate and adaptive immune responses were tested using an RT2 profiler polymerase chain reaction (PCR) array. Results: The PCR array data showed significantly higher TLR-1, TLR-2, TLR-3, TLR-6, interleukin 1α (IL-1α), IL-1β, IL-6, IL-12, interferon α (IFN-α), IFN-β, tumor necrosis factor α (TNF-α), CXCL8, GM-CSF, G-CSF, CD14, ELK1, IRAK1, IRAK2, IRAK4, IRF1, IRF3, LY96, MAP2K3, MAP2K4, MAP3K7, MAP4K4, MAPK8, MAPK8IP3, MYD88, NFKB1, NFKB2, REL, TIRAP, and TRAF6 expression in the high-DFI group than in the control group. These factors are all involved in the TLR-MyD88 signaling pathway. Conclusion: The MyD88-dependent pathway through TLR-1, TLR-2, and TLR-6 activation may be one of the main inflammatory pathways activated by high-DFI sperm from men with RIF. Following activation of this pathway, epithelial cells produce inflammatory cytokines, resulting in neutrophil infiltration, activation, phagocytosis, neutrophil extracellular trap formation, and apoptosis.

Lysate of Probiotic Lactobacillus plantarum K8 Modulate the Mucosal Inflammatory System in Dextran Sulfate Sodium-induced Colitic Rats

  • Ahn, Young-Sook;Park, Min Young;Shin, Jae-Ho;Kim, Ji Yeon;Kwon, Oran
    • Food Science of Animal Resources
    • /
    • v.34 no.6
    • /
    • pp.829-835
    • /
    • 2014
  • Inflammatory bowel disease (IBD) is caused by dysregulation of colon mucosal immunity and mucosal epithelial barrier function. Recent studies have reported that lipoteichoic acid (LTA) from Lactobacillus plantarum K8 reduces excessive production of pro-inflammatory cytokine. In this study, we investigated the preventive effects of lysate of Lb. plantarum K8 in dextran sulfate sodium (DSS)-induced colitis. Male Sprague-Dawley rats were orally pretreated with lysate of Lb. plantarum K8 (low dose or high dose) or live Lb. plantarum K8 prior to the induction of colitis using 4% DSS. Disease progression was monitored by assessment of disease activity index (DAI). Histological changes of colonic tissues were evaluated by hematoxylin and eosin (HE) staining. Tumor necrosis factor-alpha (TNF-${\alpha}$), interleukin-6 (IL-6) levels were measured using enzyme-linked immunosorbent assay (ELISA). The colon mRNA expressions of TNF-${\alpha}$, IL-6, and toll like receptor-2 (TLR-2) were examined by quantitative real-time-transcription polymerase chain reaction (qPCR). Lysate of Lb. plantarum K8 suppressed colon shortening, edema, mucosal damage, and the loss of DSS-induced crypts. The groups that received lysate of Lb. plantarum K8 exhibited significantly decreased levels of the pro-inflammatory cytokines TNF-${\alpha}$ and IL-6 in the colon. Interestingly, colonic expression of toll like receptor-2 mRNA in the high-dose lysate of Lb. plantarum K8 group increased significantly. Our study demonstrates the protective effects of oral lysate of Lb. plantarum K8 administration on DSS-induced colitis via the modulation of pro-inflammatory mediators of the mucosal immune system.

Trichostatin A Protects Liver against Septic Injury through Inhibiting Toll-Like Receptor Signaling

  • Kim, So-Jin;Park, Jin-Sook;Lee, Do-Won;Lee, Sun-Mee
    • Biomolecules & Therapeutics
    • /
    • v.24 no.4
    • /
    • pp.387-394
    • /
    • 2016
  • Sepsis, a serious clinical problem, is characterized by a systemic inflammatory response to infection and leads to organ failure. Toll-like receptor (TLR) signaling is intimately implicated in hyper-inflammatory responses and tissue injury during sepsis. Histone deacetylase (HDAC) inhibitors have been reported to exhibit anti-inflammatory properties. The aim of this study was to investigate the hepatoprotective mechanisms of trichostatin A (TSA), a HDAC inhibitor, associated with TLR signaling pathway during sepsis. The anti-inflammatory properties of TSA were assayed in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Polymicrobial sepsis was induced in mice by cecal ligation and puncture (CLP), a clinically relevant model of sepsis. The mice were intraperitoneally received TSA (1, 2 or 5 mg/kg) 30 min before CLP. The serum and liver samples were collected 6 and 24-h after CLP. TSA inhibited the increased production of tumor necrosis factor (TNF)-${\alpha}$ and interleukin (IL)-6 in LPS-stimulated RAW264.7 cells. TSA improved sepsis-induced mortality, attenuated liver injury and decreased serum TNF-${\alpha}$ and IL-6 levels. CLP increased the levels of TLR4, TLR2 and myeloid differentiation primary response protein 88 (MyD88) protein expression and association of MyD88 with TLR4 and TLR2, which were attenuated by TSA. CLP increased nuclear translocation of nuclear factor kappa B and decreased cytosolic inhibitor of kappa B ($I{\kappa}B$) protein expression, which were attenuated by TSA. Moreover, CLP decreased acetylation of $I{\kappa}B$ kinase (IKK) and increased association of IKK with $I{\kappa}B$ and TSA attenuated these alterations. Our findings suggest that TSA attenuates liver injury by inhibiting TLR-mediated inflammatory response during sepsis.

Lipoteichoic Acid from Lactobacillus plantarum Inhibits the Expression of Platelet-Activating Factor Receptor Induced by Staphylococcus aureus Lipoteichoic Acid or Escherichia coli Lipopolysaccharide in Human Monocyte-Like Cells

  • Kim, Hangeun;Jung, Bong Jun;Jeong, Jihye;Chun, Honam;Chung, Dae Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.8
    • /
    • pp.1051-1058
    • /
    • 2014
  • Platelet-activating factor receptor (PAFR) plays an important role in bacterial infection and inflammation. We examined the effect of the bacterial cell wall components lipopolysaccharide (LPS) and lipoteichoic acid (LTA) from Lactobacillus plantarum (pLTA) and Staphylococcus aureus (aLTA) on PAFR expression in THP-1, a monocyte-like cell line. LPS and aLTA, but not pLTA, significantly increased PAFR expression, whereas priming with pLTA inhibited LPS-mediated or aLTA-mediated PAFR expression. Expression of Toll-like receptor (TLR) 2 and 4, and CD14 increased with LPS and aLTA treatments, but was inhibited by pLTA pretreatment. Neutralizing antibodies against TLR2, TLR4, and CD14 showed that these receptors were important in LPS-mediated or aLTA-mediated PAFR expression. PAFR expression is mainly regulated by the nuclear factor kappa B signaling pathway. Blocking PAF binding to PAFR using a PAFR inhibitor indicated that LPS-mediated or aLTA-mediated PAF expression affected TNF-${\alpha}$ production. In the mouse small intestine, pLTA inhibited PAFR, TLR2, and TLR4 expression that was induced by heat-labile toxin. Our data suggested that pLTA has an anti-inflammatory effect by inhibiting the expression of PAFR that was induced by pathogenic ligands.

Protective Role of the Toll-Like Receptor 5 Agonist KMRC011 against Murine Colitis Induced by Citrobacter rodentium and Dextran Sulfate Sodium

  • Jun-Young Kim;Sun-Min Seo;Han-Woong Kim;Woo-Jong Lee;Yang-Kyu Choi
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.35-42
    • /
    • 2023
  • This study aimed to identify the therapeutic ability of a novel toll-like receptor (TLR) 5 agonist, KMRC011, on ulcerative colitis induced by Citrobacter rodentium and dextran sulfate sodium in a C57BL/6N mouse model. Ulcerative colitis was induced in the mice by the oral administration of 1% dextran sulfate sodium in sterile drinking water for seven days ad libitum, followed by C. rodentium infection on the seventh day by intra-gastric administration (DSS-CT group). KMRC011 was administered intramuscularly at both 24 h and 15 min before (Treatment 1 group), and at both 15 min and 24 h after (Treatment 2 group) the C. rodentium infection. The length of the large intestine and histopathological counts were significantly greater and mucosal thickness was significantly thinner in the Treatment 1 group compared to the DSS-CT and Treatment 2 groups. Il-6 and Il-10 mRNA expression levels were upregulated, while Ifn-γ and Tnf-α mRNA expression levels were significantly downregulated in the Treatment 1 group, compared to the DSS-CT group. NF-κB p65 expression level was elevated due to ulcerative colitis in the DSS-CT group, but was significantly downregulated in the Treatment 1 group. Overall, KMRC011 showed protective effects against murine colitis by inhibiting NF-κB signaling.

Sulfasalazine attenuates tamoxifen-induced toxicity in human retinal pigment epithelial cells

  • Hwang, Narae;Chung, Su Wol
    • BMB Reports
    • /
    • v.53 no.5
    • /
    • pp.284-289
    • /
    • 2020
  • Tamoxifen, a nonsteroidal estrogen receptor (ER) antagonist, is used routinely as a chemotherapeutic agent for ER-positive breast cancer. However, it is also causes side effects, including retinotoxicity. The retinal pigment epithelium (RPE) has been recognized as the primary target of tamoxifen-induced retinotoxicity. The RPE plays an essential physiological role in the normal functioning of the retina. Nonetheless, potential therapeutic agents to prevent tamoxifen-induced retinotoxicity in breast cancer patients have not been investigated. Here, we evaluated the action mechanisms of sulfasalazine against tamoxifen-induced RPE cell death. Tamoxifen induced reactive oxygen species (ROS)-mediated autophagic cell death and caspase-1-mediated pyroptosis in RPE cells. However, sulfasalazine reduced tamoxifen-induced total ROS and ROS-mediated autophagic RPE cell death. Also, mRNA levels of tamoxifen-induced pyroptosis-related genes, IL-1β, NLRP3, and procaspase-1, also decreased in the presence of sulfasalazine in RPE cells. Additionally, the mRNA levels of tamoxifen-induced AMD-related genes, such as complement factor I (CFI), complement factor H (CFH), apolipoprotein E (APOE), apolipoprotein J (APOJ), toll-like receptor 2 (TLR2) and toll-like receptor 4 (TLR4), were downregulated in RPE cells. Together, these data provide novel insight into the therapeutic effects of sulfasalazine against tamoxifen-induced RPE cell death.