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Objective: The DNA integrity of spermatozoa that attach to fallopian tube (FT) cells is higher than spermatozoa that do not attach. FT epithe-
lial cells can distinguish normal and abnormal sperm chromatin. This study investigated the effects of sperm with a high-DNA fragmentation 
index (DFI) from men with unexplained repeated implantation failure (RIF) on the Toll-like receptor (TLR) signaling pathway in human FT cells 
in vitro. 
Methods: Ten men with a RIF history and high-DFI and 10 healthy donors with low-DFI comprised the high-DFI (>30%) and control (<30%) 
groups, respectively. After fresh semen preparation, sperm were co-cultured with a human FT epithelial cell line (OE-E6/E7) for 24 hours. RNA 
was extracted from the cell line and the human innate and adaptive immune responses were tested using an RT2 profiler polymerase chain 
reaction (PCR) array. 
Results: The PCR array data showed significantly higher TLR-1, TLR-2, TLR-3, TLR-6, interleukin 1α (IL-1α), IL-1β, IL-6, IL-12, interferon α (IFN-α), 
IFN-β, tumor necrosis factor α (TNF-α), CXCL8, GM-CSF, G-CSF, CD14, ELK1, IRAK1, IRAK2, IRAK4, IRF1, IRF3, LY96, MAP2K3, MAP2K4, MAP3K7, 
MAP4K4, MAPK8, MAPK8IP3, MYD88, NFKB1, NFKB2, REL, TIRAP, and TRAF6 expression in the high-DFI group than in the control group. These 
factors are all involved in the TLR-MyD88 signaling pathway. 
Conclusion: The MyD88-dependent pathway through TLR-1, TLR-2, and TLR-6 activation may be one of the main inflammatory pathways 
activated by high-DFI sperm from men with RIF. Following activation of this pathway, epithelial cells produce inflammatory cytokines, result-
ing in neutrophil infiltration, activation, phagocytosis, neutrophil extracellular trap formation, and apoptosis. 
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Introduction 

The fallopian tube (FT), also known as the uterine tube, is an im-
portant part of the female reproductive tract. The FT plays a critical 
function in human reproduction by providing a specific cellular and 
molecular microenvironment to support gamete transport, fertiliza-
tion, and early embryonic development [1]. Therefore, FT obstruction 
or epithelial dysfunction may result in fertility impairment [2,3]. In-



terestingly, human FT epithelial cells are recognized as part of the in-
nate immune system, which could mediate inflammatory responses 
to potential invaders [4]. Studies have investigated Toll-like receptors 
(TLRs) as key players in inflammation and found that they are highly 
expressed by FT epithelial cells [5-7]. TLRs play an essential role in 
immune activation through the recognition of pathogen-associated 
molecular patterns (PAMPs) and endogenous damage-associated 
molecular patterns (DAMPs) [5,6,8]. The interaction of sperm with 
the FT may affect sperm storage, motility, survival, and capacitation 
[9]. Sperm interaction with FT epithelial cells is a complex process 
that could induce biochemical and physiological alterations. More-
over, this process leads to the activation of innate immune mecha-
nisms, such as TLR signaling [5,10]. In general, TLRs play a major role 
in the immune interaction between FT and sperm [11], sperm capac-
itation, fertilization, and pregnancy [6,11]. 

Despite advances in technology in the field of infertility treatment, 
the implantation success rate in embryo transfer cycles ranges from 
26% to 45% [12]. Repeated implantation failure (RIF) is defined as 
implantation failure after the transfer of at least four high-quality 
embryos in at least three cycles. Since sperm provides half of the ge-
netic material of the embryo, studies have investigated its role in RIF 
patients [13]. Sperm DNA integrity is an influential factor in embryo 
development and reproductive outcomes [14,15]. Although the 
sperm DNA fragmentation index (DFI) may be associated with an in-
creased risk of miscarriage, its relationship with RIF has not been 
proven, and this issue needs further investigation [16]. Evidence has 
demonstrated that the sperm DFI is significantly elevated in infertile 
couples with unexplained or idiopathic infertility [17-19]. In this con-
text, it has been shown that the DNA integrity of spermatozoa that 
attach to FT cells is higher than spermatozoa that do not attach [20]. 
Conspicuously, FT epithelial cells are actively able to distinguish nor-
mal and abnormal sperm chromatin [21]. Hence, this study aimed to 
evaluate the effects of sperm with high sperm DNA fragmentation 
on the expression of TLRs, adaptor molecules, and cytokines in FT 
epithelial cells through the polymerase chain reaction (PCR) array 
method. 

Methods 

1. Patient selection 
This study was approved by the Institutional Review Board of the 

Ethics Committee of Royan Institute (Reference number: IR.ACECR.
ROYAN.REC.EC/91/1084). Written informed consent was obtained 
from all patients. 

Ten men with a history of unexplained RIF, a normal standard se-
men analysis (according to the 2010 World Health Organization 
[WHO] criteria) and a DFI > 30% comprised the high-DFI group, and 

10 normozoospermic men with at least one child and DFI < 30% 
comprised the control group. Patients with a medical history of vari-
cocele, testicular atrophy, undescended testis, genitourinary infec-
tion, chronic prostatitis, cigarette smoking, and alcohol consumption 
were excluded from the study.  

2. Cell line (OE-E6/E7) and sperm preparation  
The OE-E6/E7 cell line was cultured in Dulbecco’s Modified Eagle’s 

Medium/F12 (Invitrogen, Paisley, UK) with 1% penicillin and strepto-
mycin (Sigma-Aldrich, Poole, UK), L-glutamine (Invitrogen, Waltham, 
MA, USA) and 10% fetal bovine serum (Invitrogen, Waltham, MA, 
USA). The cells were incubated in a 37°C incubator in an atmosphere 
of 5% CO2 in the air. Semen samples were analyzed according to the 
WHO guidelines and sperm preparation was performed by density 
gradient centrifugation and the swim-up method. 

3. Sperm chromatin structure assay 
The sperm chromatin structure assay was used to determine the 

DFI value. An aliquot of unprocessed semen containing 1–4 million 
sperm/mL was diluted with Tris-HCl, NaCl, and ethylenedi-
aminetetraacetic acid (EDTA) (TNE) buffer. The cell suspension was 
treated with an acidic detergent solution (pH 1.2) comprising 0.1% 
Triton X-100, 0.15 mol/L NaCl, and 0.08 mol/L HCl for 30 seconds. The 
cells were then stained with 6 mg/L purified acridine orange (AO) 
(Polysciences, Warrington, PA, USA) in a phosphate citrate buffer (pH 
6.0). Then, chromatin damage was determined by measuring the 
metachromatic change of AO fluorescence from green (associated 
with double-stranded DNA) to red (associated with single-stranded 
and denatured DNA). All analysis were performed by a technical ex-
pert [22] and a DFI > 30% was considered high [23,24]. 

4. Sperm co-culture with OE-E6/E7 
First, OE-E6/E7 cell culture was performed in 6-well culture plates 

until confluency. After sperm preparation in both groups (high-DFI 
and control), 1 × 103 sperm in each group were added to cultured 
cells separately [11]. The OE-E6/E7 cells were incubated with sperm 
for 24 hours. Then, the culture medium was collected. The OE-E6/E7 
cells were washed with calcium and magnesium-free phos-
phate-buffered saline (PBS) and then were harvested with trypsin/
EDTA (Invitrogen, Paisley, UK). The harvested cells were centrifuged 
at 300 × g for 5 minutes and the pellets were used for RNA ex-
traction. 

5. RNA extraction and cDNA synthesis 
RNA extraction was performed using an RNeasy mini kit (Cat. No: 

73,304, Qiagen, Hilden, Germany), according to the manufacturer’s 
instructions. The quality and quantity of the extracted RNA were 
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evaluated using a Nanodrop spectrophotometer device. cDNA syn-
thesis was carried out using an RT2 first strand kit (Cat. No: 330,40, 
Qiagen) [25]. 

6. PCR array 
The expression levels of 84 genes involved in the human innate 

immune response were evaluated by an RT2 profiler PCR array kit 
(Cat. No: PAHS-052A, Qiagen) and an RT2 SYBR Green ROX qPCR 
master mix (Cat. No: 330,502, Qiagen). Glyceraldehyde-3-phosphate 
dehydrogenase was considered as an endogenous control. The ex-
periment was performed with a StepOnePlus Real-Time PCR System 
(Thermo Fisher, Waltham, MA, USA). 

7. Statistical analysis 
Data were expressed as mean ± standard deviation. The normality 

of the data distribution was examined by the Kolmogorov-Smirnov 
test. The Mann-Whitney U test and the independent samples t-test 
were used for non-parametric and parametric analysis, respectively. 
All data were analyzed using SPSS ver. 22 software (IBM Co., Armonk, 
NY, USA), and a p < 0.05 was considered as the significance level.  

Results 

After 24 hours of co-culture, up to 90% of sperm were viable and 
unattached to the OE-E6/EE7 cells. Therefore, sperm were easily iso-
lated from the cell line using PBS washes. A profiler PCR array was 
used to evaluate alterations in the expression of genes related to the 
innate and adaptive immune responses in the OE-E6/E7 cell line in-

cubated with sperm from the two study groups (high-DFI and con-
trol groups). The genes with significantly upregulated expression in 
the high-DFI group in comparison with the low-DFI (control) group 
are shown in Figures 1-3 (p < 0.05). 

The expression levels of TLR-1, TLR-2, TLR-3, and TLR-6 in the high-
DFI group were significantly higher than the control group (p < 0.05) 
(Figure 1). The relative expression levels of proinflammatory cytokine 
and chemokine receptors, including interleukin 1α (IL-1α), IL-1β, IL-6, 
IL-12, interferon α (IFN-α), IFN-β, tumor necrosis factor α (TNF-α), 
C-X-C motif chemokine ligand 8 (CXCL8), granulocyte colony-stimu-
lating factor (G-CSF), and granulocyte-macrophage (GM)-CSF were 
higher in the high-DFI group than in the control group (p < 0.05) 
(Figure 2). Furthermore, the expression levels of several adaptor mol-
ecules, including cluster of differentiation 14 (CD14), ETS transcrip-
tion factor ELK1 (ELK1), IL-1 receptor-associated kinase (IRAK1), 
IRAK2, IRAK4, interferon regulatory factor 1 (IRF1), IRF3, lymphocyte 
antigen 96 (LY96), mitogen-activated protein kinase kinase 3 
(MAP2K3), MAP2K4, MAP3K7, MAP4K4, mitogen-activated protein 
kinase 8 (MAPK8), MAPK8IP3, myeloid differentiation primary re-
sponse 88 (MYD88), nuclear factor kappa B subunit 1 (NFKB1), 
NFKB2, REL, Toll/ interleukin-1 receptor domain-containing adapter 
protein (TIRAP), and TNF receptor-associated factor 6 (TRAF6), were 
significantly greater in the high-DFI group than in the control group 
(p < 0.05) (Figure 3). 

Discussion 

The interaction of sperm and the FT is considered an essential 
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event in the fertilization process, and it can activate an immune re-
sponse. In this study, the expression of TLRs, adaptor molecules, and 
inflammatory cytokines and chemokines was evaluated in response 
to the interaction of sperm with high-DFI from RIF patients with a 
human FT epithelial cell line. The results showed that the interaction 
of high-DFI sperm from these patients with FT cells stimulated the 
innate immune system and specific inflammatory pathways. 

The innate immune system, as the first line of defense, plays an in-
fluential role by recognizing PAMPs and DAMPs through TLRs in FT 
epithelial cells [26]. Several immune pathways are potentially in-
volved in the interaction of high-DFI sperm with the FT. This study re-
vealed that the expression of TLR-1, TLR-2, and TLR-6 were signifi-
cantly higher in the high-DFI group than in the low-DFI group (Figure 
1). Existing evidence indicates that TLR-2 can form a heterodimer 

with TLR-1 or TLR-6. These complexes can recognize DAMPs, which 
are released from damaged cells. Following TLR signaling, two main 
pathways—the MyD88 and TIR-domain-containing adapter-induc-
ing interferon-β (TRIF)—are activated. In particular, TLR-1, TLR-2, and 
TLR-6 signaling is mediated by the MyD88-dependent pathway [11]. 
The intracellular part of these complexes binds to cytosolic adaptor 
molecules, including MyD88 and TIRAP. Finally, signal transduction 
occurs through IRAK1. Subsequently, the TLR signaling pathway 
leads to the activation of activating protein-1 (Ap-1) and nuclear fac-
tor kappa light chain enhancer of activated B cell (NF-κB) transcrip-
tion factors, which regulate the production of inflammatory cyto-
kines and chemokines, including IL-1, IL-6 and, TNF-α, G-CSF, GM-
CSF, CXCL10, CXCL8 (IL-8), and C-C motif chemokine ligand 2 (CCL2) 
(Figure 4) [27,28]. 

Figure 4. Toll-like receptor (TLR) signaling pathway. TLR-2 can form a heterodimer with TLR-1 or TLR-6. These complexes can recognize 
damage-associated molecular patterns, which are released through damaged cells. Activation of the TLR pathway leads to inflammatory 
cytokines, which can orchestrate neutrophil activation and NETosis. MD2, myeloid differentiation protein 2 (also known as lymphocyte 
antigen 96); MyD88, myeloid differentiation primary response 88; TIRAP, Toll/interleukin-1 receptor domain-containing adapter protein; IRAK, 
IL-1 receptor-associated kinase; TRAF6, TNF receptor-associated factor 6; NF-κB, nuclear factor kappa light chain enhancer of activated B cell; 
MAPK, mitogen-activated protein kinase; AP-1, activating protein-1; G-CSF, granulocyte colony-stimulating factor; GM-CSF, granulocyte-
macrophage colony-stimulating factor; CXCL8, C-X-C motif chemokine ligand 8; CCL2, C-C motif chemokine ligand 2; IL, interleukin; TNF-α, 
tumor necrosis factor α; NET, neutrophil extracellular trap.
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Our study results demonstrated that all transcription factors in-
volved in the MyD88-dependent pathway were significantly in-
creased in the high-DFI group, which may indicate the effect of high-
DFI in stimulating this inflammatory pathway (Figures 2 and 3). Al-
though these factors play an important role in fertility, their upregu-
lated expression makes the FT conditions unfavorable for successful 
fertilization and healthy pregnancy. For instance, IL-6 plays a vital 
role in sperm capacitation and embryo implantation; however, the 
upregulation of IL-6 can reduce the ciliary activity of the FT epitheli-
um and lead to defective embryo implantation in the FT [29]. IL-1 
also causes destruction of the cilia in pathological conditions [30]. 
According to the evidence, a high concentration of IL-1 leads to the 
impairment of fertilization in a sperm penetration assay and zona 
pellucida assay and inhibits mouse embryo development [31]. Fur-
thermore, the upregulation of TNF-α could reduce sperm motility 
and prevent sperm/mucus interaction [32]. 

Many studies have been conducted on the relationship between 
male infertility and RIF, but a connection has not been securely es-

tablished. It is possible that high-DFI in sperm may lead to defects in 
embryo implantation through a negative effect on the FT. In a previ-
ous study, we cultured semen samples of 10 healthy men with the 
OE-E6/E7 cell line and examined the expression of 84 cytokines in 
the cell line using quantitative PCR. That study showed that sperm 
exhibited changing expression levels of cytokines, chemokines, and 
growth factors [33]. Furthermore, in another study, we cultured the 
sperm samples of 10 men with unexplained infertility and high-DFI 
compared to semen samples of 10 healthy donor men with OE-E6/
E7 cell lines, and quantitative PCR analysis showed that DNA dam-
age-induced activation of the TLR signaling pathway in human FT 
led to the upregulation of inflammatory cytokines and chemokines 
[11]. 

Oxidative stress, apoptosis, and chromatin remodeling are three 
major causes of sperm DNA fragmentation. In patients with high 
sperm DNA fragmentation, DAMPs are released from damaged sper-
matozoa, which can activate the immune response [34]. The FT epi-
thelial cells may respond to these molecules through TLRs, leading 

Figure 5. Immuno-inflammatory mechanism of sperm loss and infertility of men with high sperm DNA fragmentation. The released damage-
associated molecular patterns (DAMPs) through damaged sperm are recognized by Toll-like receptors (TLRs) on the epithelial cells. Following 
TLR signaling, epithelial cells produce inflammatory cytokines, which result in the infiltration of neutrophils. In the lumen of the fallopian 
tube (FT), neutrophils are activated via TLR-1/TLR-2 and TLR-2/TLR-6 complexes, leading to neutrophil activation, phagocytosis, neutrophil 
extracellular trap (NET) formation, and apoptosis. DC, dendritic cell; TC, T cell; NEU, neutrophil; MQ, macrophage; MC, mast cell; BC, B cell; 
EOS, eosinophil; G-CSF, granulocyte colony-stimulating factor; GM-CSF, granulocyte-macrophage colony-stimulating factor; CCL2, C-C motif 
chemokine ligand 2; CXCL8, C-X-C motif chemokine ligand 8; TNF-α, tumor necrosis factor α; IL, interleukin; TCR, t-cell receptor; CD3, cluster of 
differentiation 3.
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to inflammatory cytokine secretion, which may orchestrate the infil-
tration of granulocytes, especially neutrophils [27,28]. 

As Figure 2 shows, IL-1 and TNF-α expression was increased in the 
high-DFI group; these molecules promote the expression of CXCL8 
by endothelial cells [35]. However, CXCL8, also known as IL-8, regu-
lates immune cell migration, especially the infiltration of neutrophils 
[27,36]. Neutrophils, the major granulocytes in the FT, respond to 
foreign molecular patterns through signaling pathways, antimicrobi-
al agents, cytotoxic components, and proinflammatory cytokine pro-
duction [37]. Interestingly, neutrophils can be found in the lumen of 
the FT through transepithelial migration. In general, neutrophils are 
capable of producing high amounts of reactive oxygen species, 
which exert a negative effect on sperm motility and fertility [38]. The 
activation of neutrophils can also lead to NETosis and apoptosis (Fig-
ure 5). NETosis is considered as a cell death model that is different 
from necrosis and apoptosis. Neutrophil extracellular traps (NETs) are 
structures consisting of decondensed chromatin and expanded nu-
clear material that combine with cytoplasmic components after the 
nuclear membrane decomposes. They are then released following 
the rupture of the plasma membrane, leading to the trapping and 
killing of microorganisms [39-41]. It has been shown that the incuba-
tion of peripheral neutrophils with equine sperm resulted in severe 
NET formation. It also has been observed that the repeated deposi-
tion of sperm in the presence of neutrophils could reduce fertility 
potential [42]. These plausible immuno-inflammatory mechanisms 
may be viewed as a potential factor in male infertility. Since the 
pathophysiological identification of patients with RIF can guide the 
treatment of patients and increase the success rate, more research 
on the effects of sperm with high-DNA fragmentation on the female 
reproductive system and a better understanding of the immune-in-
flammatory mechanism and neutrophil function in these patients 
are needed. 

In conclusion, this study provides novel insights into the role of the 
innate immune responses and TLR signaling pathways in men with 
history of unexplained RIF. The MyD88-dependent pathways of TLR-
1, TLR-2, and TLR-6, as well as neutrophil activation, are inflammatory 
pathways activated by high-DFI sperm that could be considered as a 
potential immunopathogenesis of male infertility. 
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