• Title/Summary/Keyword: tolerant lines

Search Result 93, Processing Time 0.025 seconds

Comparison of the nutritional compositions of oxidative stress-tolerant transgenic rice and conventional rice (산화 스트레스 내성 형질전환 벼 현미의 주요 영양성분 분석)

  • Woo, Hee-Jong;Shin, Kong-Sik;Lim, Myung-Ho;Park, Soon Ki
    • Journal of Plant Biotechnology
    • /
    • v.41 no.4
    • /
    • pp.206-211
    • /
    • 2014
  • Nutritional assessment of transgenic crops to improve safety evaluations is important for food production. An oxidative stress-tolerant rice was generated by stable insertion of the TC gene-a tocopherol cyclase isolated from tobacco-into the genome of a common variety of japonica colored rice. The nutritional composition of the brown rice grains from the transgenic TC line was compared with that of the parental rice cultivar Heugnambyeo and two different varieties of non-transgenic rice. The results indicate that the analyzed nutritional compositions of the brown grains from the transgenic TC line were within the range of values reported for other commercial lines, and measurements of nutritional compositions were equivalent to those of the non-transgenic rice.

Salt tolerant rice cv Nona Bokra chromosome segments introgressed into cv Koshihikari improved its yield under salinity through retained grain filling

  • Mitsuya, Shiro;Murakami, Norifumi;Sato, Tadashi;Kano-Nakata, Mana;Yamauchi, Akira
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.238-238
    • /
    • 2017
  • Salt stress is one of the deteriorating abiotic stresses due to the climate change, which causes over-accumulation of $Na^+$ and $Cl^-$ ions in plants and inhibits the growth and yield of rice especially in coastal Southeastern Asia. The yield components of rice plant (panicle number, spikelet number per panicle, 1000-grain weight, % of ripened grains) that are majorly affected by salt stress vary with growth stages at which the plant is subjected to the stress. In addition, the salt sensitivity of each yield component differs among rice varieties even when the salt-affected growth stage was same, which indicates that the physiological mechanism to maintain each yield component is different from each other. Therefore, we hypothesized that rice plant has different genes/QTLs that contribute to the maintenance of each yield component. Using a Japanese leading rice cultivar, Koshihikari, and salt-tolerant Nona bokra's chromosome segment substitution lines (CSSLs) with the genetic background of Koshihikari (44 lines in total) (Takai et al. 2007), we screened higher yielding CSSLs under salinity in comparison to Koshihikari and identified the yield components that were improved by the introgression of chromosome segment(s) of Nona bokra. The experiment was conducted in a salinized paddy field. One-month-old seedlings were transplanted into a paddy field without salinity. These were allowed to establish for one month, and then the field was salinized by introducing saline water to maintain the surface water at 0.4% salinity until harvest. The experiments were done twice in 2015 and 2016. Although all the CSSLs and Koshihikari decreased their yield under salinity, some CSSLs showed relatively higher yield compared with Koshihikari. In Koshihikari, all the yield components except panicle number were decreased by salinity and % of ripened grains was mostly reduced, followed by spikelet number per panicle and 1000-grain weight. When compared with Koshihikari, keeping a higher % of ripened grains under salinity attributed to the significantly greater yield in one CSSL. This indicated that the % of ripened grains is the most sensitive to salt stress among the yield components of Koshihikari and that the Nona bokra chromosome segments that maintained it contributed to increased yield under salt stress. In addition, growth analyses showed that maintaining relative growth rate in the late grain filling stage led to the increased yield under salt stress but not in earlier stages.

  • PDF

Selection of Herbicide - Tolerant Rice(Oryza sativa L.) Callus by Tissue Culture (조직배양(組織培養)을 통한 수도내성(水稻耐性) 카루스 선발(選拔))

  • Shin, D.H.;Moody, K.;Zapata, F.J.;Kim, K.U.
    • Korean Journal of Weed Science
    • /
    • v.10 no.4
    • /
    • pp.285-293
    • /
    • 1990
  • The response of callus growth of rice (Oryza sativa L.) cultivars which showed different responses to herbicides as seedlings was investigated to select resistant or tolerant calli. Callus growth of IR28 which was susceptible to thiobencarb (S-[(4-chlorophenyl)methyl]diethylcarbamothioate) during callus induction was not inhibited by $10^{-5}$ M and $10^{-6}$ M thiobencarb, indicating that there was a difference in tolerance among callus induction and growth, and the intact plant level. A similar result was obtained with IR31917-45-3-2-2 to butachlor [N - (buthoxymethyl) -2-chloro-N- (2, 6-diethylphenyl) acetamide]. The fresh weight of IR28 callus transferred into $10^{-5}$ M thiobencarb after treatment at $10^{-6}$ M for 30 days was not affected by the herbicide, indicating that transferring callus into gradually higher herbicide concentrations can be a useful method for selection of herbicide-tolerant cell lines.

  • PDF

Studies on Male Sterile Facilitated. Recurrent Selection in Barley Breeding 1. Development of RSPYB#1 Population and Selection of Pedigree Lines (웅성불임을 이용한 보리의 순환선발 육종에 관한 연구 제1보 보리 순환선발집단 RSPYB#1의 육성과 계통선발에 관하여)

  • Lee, B.H.;Suh, D.Y.;Suh, H.S.;Park, R.K.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.25 no.1
    • /
    • pp.39-46
    • /
    • 1980
  • A male sterile facilitated recurrent selection population was developed by the barley breeding team of Yeongnam Crop Experiment Station. To breed this population, three composite cross populations and a composite population of breeding lines in our country were used as the materials. This population was developed in order to breed early maturing, wet-soil tolerant and high yielding barley varieties, adapted for double cropping with rice in southern part of Korea. The population was named by RSPYB#l which means Recurrent Selection Population No.1. of Yeongnam Barley.

  • PDF

Evaluation of Root Characters Associated with Lodging Tolerance by Seedling Test in Rice

  • Si-Yong, Kang;Won-Ha, Yang;Hyun-Tak, Shin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.4
    • /
    • pp.309-315
    • /
    • 1999
  • Rice seedling test was conducted to check the loging tolerance at ripening stage through evaluating the root characters. Thirteen Korean and foreign rice cultivars with direct seeding adaptable or high quality characteristics were grown in a cell pot and under submerged paddy. The root characters and pushing resistance of rice hill were determined at seedling and ripening stage, respectively. The diameter of crown root at the 7th and 8th leaf stages was thicker in lodging tolerance cultivars than those of others and showed significant-positive correlation with both pushing resistance and crown root diameter of mature plants. Also, the tensile strength of crown root at the 7th and 8th leaf stage showed highly positive correlation with the tensile strength of crown root of mature plants. The number of crown root at 7th leaf stage was significant-positively correlated with that of mature plant. The diameter of seminal root was not significantly correlated with the diameter of crown root throughout the whole growth stage. These results indicate that the diameter, tensile strength and number of crown root associated with root lodging tolerance can be detected with the seedling at about 7th or 8th leaf stage, and the seedling test using the cell pot is an useful and practical method to select lodging tolerant cultivars or lines of rice based on root characters, especially diameter of crown root.

  • PDF

Annual $CO_2$ Uptake by Urban Popular Landscape Tree Species (도시 주요조경수종의 연간 $CO_2$흡수)

  • 조현길;조동하
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.26 no.2
    • /
    • pp.38-53
    • /
    • 1998
  • This study quantified annual net carbon uptake by urban landscape trees and provided equations to estimate it for Ginkgo biloba, platanus occidentalis, Zelkova serrata and Acer palmatum, based on measurement of exchange rate for two years growing seasons from Sep., 1995 to Aug., 1997. The carbon uptake was significantly influenced by photosynthetic capacity, photon flux density and pruning. Ginkgo biloba showed the highest rate of net CO\sub 2\ uptake per unit leaf area and Acer palmatum did the lowest rate among those species. A tree shaded by adjacent building over the growing seasons showed net CO\sub2\ uptake per unit leaf area much lower than another tree of the same species less shaded. Annual net carbon uptake per tree was 19kg for Zelkova serrata, but only 1 kg for Ginkgo biloba and Platanus occidentalis with crown volume dwarfed from pruning. One Zekoval serrata tree annually offset carbon emission from consumption of about 32 liter of gasoline or 83 kWh of electricity. Strategies to improve CO\sub 2\ uptake by urban landscape trees include planting of species with high potosynthetic capacity, sunlight-guaranteed road and building layout for street trees, planting of shade-tolerant species in the north of buildings, and relocation of utility lines to underground and minimized pruning.

  • PDF

Mapping of Quantitative Trait Loci for Salt Tolerance at the Seedling Stage in Rice

  • Lee, Seung Yeob;Ahn, Jeong Ho;Cha, Young Soon;Yun, Doh Won;Lee, Myung Chul;Ko, Jong Cheol;Lee, Kyu Seong;Eun, Moo Young
    • Molecules and Cells
    • /
    • v.21 no.2
    • /
    • pp.192-196
    • /
    • 2006
  • Salt tolerance was evaluated at the young seedling stage of rice (Oryza sativa L.) using recombinant inbred lines (MG RILs) from a cross between Milyang 23 (japonica/indica) and Gihobyeo (japonica). 22 of 164 MG RILs were classified as tolerant with visual scores of 3.5-5.0 in 0.7% NaCl. Interval mapping of QTLs related to salt tolerance was conducted on the basis of the visual scores at the young seedling stage. Two QTLs, qST1 and qST3, conferring salt tolerance, were detected on chromosome 1 and 3, respectively, and the total phenotypic variance explained by the two QTLs was 36.9% in the MG RIL population. qST1 was the major QTL explaining 27.8% of the total phenotypic variation. qST1 was flanked by Est12~RZ569A, and qST3 was flanked by RG179~RZ596. The detection of new QTLs associated with salt tolerance will provide important information for the functional analysis of rice salt tolerance.

A simple model for selection and rapid advancement of transgenic progeny in sorghum

  • Visarada, K.B.R.S.;Saikishore, N.;Kuriakose, S.V.;Rani, V. Shobha;Royer, M.;Rao, S.V.;Seetharama, N.
    • Plant Biotechnology Reports
    • /
    • v.2 no.1
    • /
    • pp.47-58
    • /
    • 2008
  • To select agronomically useful transgenic plants, a large number of transgenic events are initially produced, gene transfer confirmed, and advanced to obtain homozygous lines for testing in field trials. Direct in planta assays for identifying the transgene carriers in the segregating progeny are based on the activity of selectable marker gene and are easy, simple and inexpensive. For this purpose, expression of bar gene as measured by tolerance to damage by glufosinate ammonium, the active ingredient in the herbicide BASTA, was investigated. Dose damage curves were generated by leaf paint tests with BASTA on four genotypes of sorghum. Transgenic plants were characterized in terms of sensitivity to the concentration of glufosinate ammonium. In transgenics, symptoms of BASTA swab tests at different growth stages and PCR analysis for cry1B were carried out and correlated. Germination tests could not be employed for large scale evaluation of transgenic progeny because of mortality of tolerant seedlings after transplantation to soil. Based on the above findings, a simple, inexpensive, time-saving, two-step scheme for effective evaluation of transgenics and their progeny containing bar gene as selection marker using BASTA swab tests is described.

Characteristics of Domestic and Foreign Collections of Pepper Germplasm (고추 국내외 수집 유전자원의 특성)

  • Kim, Byung-Soo;Lee, Woo-Sung;Hwang, Jae-Moon;Kim, Jeom-Soon;Hwang, Hee-Suk
    • Current Research on Agriculture and Life Sciences
    • /
    • v.16
    • /
    • pp.64-74
    • /
    • 1998
  • Accessions of pepper germplasm were planted in the field and their characteristics were recorded. Lines introduced from Hungary were very susceptible to virus diseases and as a result poor in adaptability in domestic field condition. KC350 and KC351 which were introduced from Brazil were growing errectly and tolerant to both bacterial spot and virus diseases. KC376, an introduction from China, was bearing large fruits with tolerance to virus. Introductions from Thailand were grown and evaluated in Andong University, and major characters of them were recorded.

  • PDF

Identification of Novel Salt Stress-responsive Genes Using the Activation Tagging System in Arabidopsis (애기장대에서 activation tagging system을 이용한 새로운 고염 스트레스 반응 유전자의 동정)

  • Seok, Hye-Yeon;Nguyen, Linh Vu;Bae, Hyoungjoon;Ha, Jimin;Kim, Ha Yeon;Lee, Sun-Young;Moon, Yong-Hwan
    • Journal of Life Science
    • /
    • v.28 no.9
    • /
    • pp.1030-1041
    • /
    • 2018
  • Abiotic stresses limit the growth and productivity of plants. Cellular adaptation to abiotic stresses requires coordinated regulation in gene expression directed by complex mechanisms. This study used the activation tagging system to identify novel salt stress-responsive genes. The study selected 9 activation tagging lines that showed salt stress-tolerant phenotypes during their germination stages. Thermal asymmetric interlaced-PCR (TAIL-PCR) was used to identify the T-DNA tagging sites on the Arabidopsis genome in selected activation tagging lines, including AT7508, AT7512, AT7527, AT7544, AT7548, and AT7556. RT-PCR analysis showed that ClpC2/HSP93-III (At3g48870), plant thionin family (At2g20605), anti-muellerian hormone type-2 receptor (At3g50685), vacuolar iron transporter family protein (At4g27870), and microtubule-associated protein (At5g16730) were activated in AT7508, AT7512, AT7527, AT7544, and AT7556, respectively. Interestingly, in AT7548, both the genes adjacent to the T-DNA insertion site were activated: Arabinogalactan protein 13 (AGP13) (At4g26320) and F-box/RNI-like/FBD-like domains-containing protein (At4g26340). All of the seven genes were newly identified as salt stress-responsive genes from this study. Among them, the expression of ClpC2/HSP93-III, AGP13, F-box/RNI-like/FBD-like domains-containing protein gene, and microtubule-associated protein gene were increased under salt-stress condition. In addition, AT7508, AT7527, and AT7544 were more tolerant to salt stress than wild type at seedling development stage, functionally validating the screening results of the activation tagging lines. Taken together, our results demonstrate that the activation tagging system is useful for identifying novel stress-responsive genes.