• Title/Summary/Keyword: tobacco pathology

Search Result 222, Processing Time 0.029 seconds

Involvement of Heat-stable and Proteinaceous Materials in the Culture of Pseudomonas putida JB-1 for the Inhibition of Tobacco mosaic virus Infection

  • Jeon, Yong-Ho;Kim, Jae-Hyun;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • v.24 no.3
    • /
    • pp.328-336
    • /
    • 2008
  • Out of various fungi and bacteria tested for inhibition of Tobacco mosaic virus(TMV) infection using Nicotiana tabacum cv. Xanthi-nc, a bacterial isolate JB-l, identified as Pseudomonas putida had a strong direct inhibitory activity against the TMV infection. Its systemic or indirect activity was also noted at more than a half level of the direct control efficacy. Disease severity was reduced significantly in the susceptible tobacco N. tabacum cv. NC 82 by the treatment of the bacterial culture filtrate, somewhat more by the pretreatment than by simultaneous treatment, probably by inhibiting the TMV transmission and translocation in the plants, showing negative serological, which responses in the viral detection by DAS-ELISA. TMV-inhibitory substances from P. putida JB-1 were water-soluble, stable to high temperature(even boiling), and to a wide range of pH. As proteinase K nullified their antiviral activity, the TMV inhibition activity of P. putida may be derived from proteinaceous materials. In electron microscopy, TMV particles treated with the JB-1 culture were shown to be shrunken with granule-like particles attached on them. All of these aspects suggest that P. putida JB-1 may be developed as a potential agent for the control of TMV.

Production of Antibacterial Substance, and Changes in Peroxidase nd Polyphenoloxidase Activities in Tobacco Plants Inoculated with Avirulent Isolate of Pseudomonas solanacearum (비병원성 Pseudomonas solanacearum 접종에 의한 담배내 항균물질생성과 Peroxidase 및 Polyphenoloxidase의 변화)

  • Yi Young Keun;Min Tae Gi;Park Won Mok
    • Korean Journal Plant Pathology
    • /
    • v.3 no.3
    • /
    • pp.203-209
    • /
    • 1987
  • The substances obtained from the leaf, stem and root of tobacco plants inoculated with avirulent and virulent isolates of Pseudomonas solanacearum were at R_f\;0.6$ and R_f\;0.9$ on TLC plate, respectively. Both substances showed antibacterial activities not only on P. solanacearum but also on Erwinia carotovora subsp. carotovora and Escherichia coli in vitro. However, the antibacterial substances were not detectable from the filtrate of the autoclaves tobacco sap medium, in which the avirulent or virulent bacterium was cultured for 3 days. Peroxidase and poly phenoloxidase activities and their isozyme patterns did not differ significantly between plants treated with the virulent and avirulent isolates, or between the susceptible cultivar BY 4 and the resistant cultivar NC 82. However, activities of the two enzymes were increased in leaves of the susceptible cultivar BY 4 treated with either the virulent or the avirulent isolate.

  • PDF

Cucumber Mosaic Virus 1a Protein Interacts with the Tobacco SHE1 Transcription Factor and Partitions between the Nucleus and the Tonoplast Membrane

  • Yoon, Ju-Yeon;Palukaitis, Peter
    • The Plant Pathology Journal
    • /
    • v.37 no.2
    • /
    • pp.182-193
    • /
    • 2021
  • The transcription factor SHE1 was identified as an interacting partner with the cucumber mosaic virus (CMV) 1a protein in the yeast two-hybrid system, by a pull-down assay, and via bimolecular fluorescent complementation. Using fluorescent-tagged proteins and confocal microscopy, the CMV 1a protein itself was found distributed predominantly between the nucleus and the tonoplast membrane, although it was also found in speckles in the cytoplasm. The SHE1 protein was localized in the nucleus, but in the presence of the CMV 1a protein was partitioned between the nucleus and the tonoplast membrane. SHE1 expression was induced by infection of tobacco with four tested viruses: CMV, tobacco mosaic virus, potato virus X and potato virus Y. Transgenic tobacco expressing the CMV 1a protein showed constitutive expression of SHE1, indicating that the CMV 1a protein may be responsible for its induction. However, previously, such plants also were shown to have less resistance to local and systemic movement of tobacco mosaic virus (TMV) expressing the green fluorescent protein, suggesting that the CMV 1a protein may act to prevent the function of the SHE1 protein. SHE1 is a member of the AP2/ERF class of transcription factors and is conserved in sequence in several Nicotiana species, although two clades of SHE1 could be discerned, including both different Nicotiana species and cultivars of tobacco, varying by the presence of particular insertions or deletions.