• Title/Summary/Keyword: tobacco pathology

Search Result 222, Processing Time 0.032 seconds

The Research Trajectory of Tobacco Pathology in Korea (한국의 연초 병학 연구사)

  • Yi, Young-Keun
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.35 no.1
    • /
    • pp.62-84
    • /
    • 2013
  • The amount and diversity of tobacco pathology research in Korea depend on the change of tobacco cultivation area. Also, the tobacco pathology research was highly influenced by the scientific development of general plant pathology during the period from 1970's to 1990's. Since 1990, the rapid decrease of the tobacco cultivation area resulted in significant decrease of the research manpower. Thus, I dare to foretell few novel studies on tobacco pathology in near future. This review summarizes a research history of tobacco pathology, at which it was once flourished in Korea.

Molecular Mechanism of Plant Growth Promotion and Induced Systemic Resistance to Tobacco Mosaic Virus by Bacillus spp.

  • Wang, Shuai;Wu, Huijun;Qiao, Junqing;Ma, Lingli;Liu, Jun;Xia, Yanfei;Gao, Xuewen
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1250-1258
    • /
    • 2009
  • Bacillus spp., as a type of plant growth-promoting rhizobacteria (PGPR), were studied with regards promoting plant growth and inducing plant systemic resistance. The results of greenhouse experiments with tobacco plants demonstrated that treatment with the Bacillus spp. significantly enhanced the plant height and fresh weight, while clearly lowering the disease severity rating of the tobacco mosaic virus (TMV) at 28 days post-inoculation (dpi). The TMV accumulation in the young non-inoculated leaves was remarkably lower for all the plants treated with the Bacillus spp. An RT-PCR analysis of the signaling regulatory genes Coil and NPR1, and defense genes PR-1a and PR-1b, in the tobacco treated with the Bacillus spp. revealed an association with enhancing the systemic resistance of tobacco to TMV. A further analysis of two expansin genes that regulate plant cell growth, NtEXP2 and NtEXP6, also verified a concomitant growth promotion in the roots and leaves of the tobacco responding to the Bacillus spp.

Inhibitory Effects of Acinetobacter sp. KTB3 on Infection of Tobacco mosaic virus in Tobacco Plants

  • Kim, Young-Sook;Hwang, Eui-ll;O, Jeong-Hun;Kim, Kab-Sig;Ryu, Myong-Hyun
    • The Plant Pathology Journal
    • /
    • v.20 no.4
    • /
    • pp.293-296
    • /
    • 2004
  • During the screening of antiviral substances having inhibitory effects on Tobacco mosaic virus (TMV) infection on tobacco plants, we found a bacterial isolate KTB3, and identified it as Acinetobacter sp. which strongly inhibited the infection of TMV When the culture filtrate from KTB3 was applied on the upper surface of the Xanthi-nc tobacco leaves at the same time, or 24 hours before TMV inoculation, almost complete inhibition was achieved. Likewise, 86% inhibition was achieved, when the culture filtrate was applied on the underside of the leaves. In field trials, transmission of TMV from diseased seedlings to healthy ones during transplanting work was reduced by 92%, when the culture filtrate was sprayed onto the tobacco seedlings, cv. NC82, 24 hours before transplanting. No toxic effect was observed on the tobacco plants. Antiviral substance from the culture filtrate was purified by ethanol precipitation, dialysis, DEAE-cellulose, and Sephadex G75 gel column chromatography. The partially purified active material which showed positive color reaction to sugar and protein inhibited TMV infection by 60% at 1 ${\mu}$g/ml.

Responses to Infection of Tobacco Mosaic Virus Pepper Strain (TMV-P) in Transgenic Tobacco Plants Expressing the TMV-P Coat Protein or Its Antisense RNA (담배 모자이크 바이러스 고추계통(TMV-P)의 외피단백질 유전자를 도입한 형질전환 담배의 TMV-P에 대한 반응)

  • 최장경;홍은주;이재열;장무웅
    • Korean Journal Plant Pathology
    • /
    • v.11 no.4
    • /
    • pp.374-379
    • /
    • 1995
  • The cDNA of tobacco mosaic virus-pepper strain (TMV-P) coat protein (CP) genes were introduced into tobacco plants (Nicotiana tabacum cv. Samsun nn) using a binary Ti plasmid vector of Agrobacterium tumefaciens. these cDNAs introduced into tobacco plants were detected by polymerase chain reaction. Symptom development was distinctly suppressed in the transgenic plant introduced buy sense CP cDNA when the plant was inoculated with TMV-P, while in transgenic tobacco plants of antisense CP gene, symptom development was not suppressed as in non-transgenic plants. TMV-P concentration in the sense CP transgenic tobacco plant was decreased to 1/14 of the concentration in non-transgenic plants. Expression of the kanamycin resistance gene of these transgenic plants could be detected in the progeny.

  • PDF

Scopoletin Production Related to Induced Resistance of Tobacco Plants Against Tobacco mosaic virus

  • Kim, Young-Ho;Choi, Do-Il;Yeo, Woon-Hyung;Kim, Young-Sook;Chae, Soon-Yong;Park, Eun-Kyung;Kim, Sang-Seock
    • The Plant Pathology Journal
    • /
    • v.16 no.5
    • /
    • pp.264-268
    • /
    • 2000
  • A fluorescent material was accumulated in inoculated leaves showing necrotic local lesions of tobacco plants with N gene, Nicotiana tabacum cvs. Xanthi-nc NN, Samsun NN, Burley 21 and KF 114, and N. glutinosa, and Datura stramonium at the early growth stages by the inoculation of Tobacco mosaic virus (TMV). It was identified as a coumarin phytoalexin, scopoletin. Although the material was most prominently produced in TMV-inoculated tobacco leaves with local necrotic lesions, its accumulation was also noted in uninoculated leaves of TMV-inoculated plants. Its accumulation was somewhat greater in high resistance-induced leaves than low resistance-induced and intact leaves. Scopoletin treatment induced the expression of a pathogenesis-related protein, PR-1, prominently at the concentration of 500 or 1000 ${\mu}$g/ml. This suggests that scopoletin is a phytoalexin abundantly accumulating in N gene-containing resistant plants in response to TMV infection, and may be related to hypersensitive responses (HR) and systemic acquired resistance (SAR) in the resistant tobacco plants.

  • PDF

Transgenic Tobacco Plants Introduced with cDNA of Cucumber Mosaic Virus Satellite RNA (오이 모자이크 바이러스 위성RNA의 cDNA가 도입된 형질전환 담배의 육성)

  • 이상용;홍은주;최장경
    • Korean Journal Plant Pathology
    • /
    • v.11 no.1
    • /
    • pp.80-86
    • /
    • 1995
  • The cDNA of CMV-As satellite RNA was introduced into tobacco plants (Nicotiana tabacum cv. Samsun NN) using a binary Ti plasmid vector system of Agrobacterium tumefaciens. The cDNA of satellite RNA introduced into tobacco plants was detected by polymerase chain reaction (PCR) and molecular hybridization analyses. Symptom development was distinctly suppressed in the transgenic tobacco plants when inoculated with CMV-Co. CMV concentration in the transgenic tobacco plants was decreased to 1/40 of non-transgenic tobacco plants. The kanamycin resistance gene of the transgenic tobacco plants was also detected in the progeny.

  • PDF

An Unusual Potyvirus from Pepper in Taiwan (대만에서 고추에 발생한 미보고 Potyvirus에 관한 연구)

  • Kim Jeong Soo;Kuo Y. J.;Green S. K.
    • Korean Journal Plant Pathology
    • /
    • v.3 no.4
    • /
    • pp.261-269
    • /
    • 1987
  • A virus which induced yellowing, vein banding and ruffling on pepper in the field was investigated. The virus reacted strongly with PVY - antiserum in ELISA, but not with antisera of cucumber mosaic virus, tobacco mosaic virus, tomato black ring virus, alfalfa mosaic virus, tomato spotted wilt virus, tobacco etch virus, pepper mottle virus, and tobacco ringspot virus. Electron micrographs revealed that the virus was a flexuous rod of 750-760nm in length. The virus was transmitted mechanically and by Myzus persicae in a nonpersistent manner. The host range was similar to that of PVY, except that Chenopodium amaranticolor and C. quinoa were infected systemiclly.

  • PDF

Effect of Bacterial Wilt on Fungal Community Composition in Rhizosphere Soil of Tobaccos in Tropical Yunnan

  • Zheng, Yuanxian;Wang, Jiming;Zhao, Wenlong;Cai, Xianjie;Xu, Yinlian;Chen, Xiaolong;Yang, Min;Huang, Feiyan;Yu, Lei;He, Yuansheng
    • The Plant Pathology Journal
    • /
    • v.38 no.3
    • /
    • pp.203-211
    • /
    • 2022
  • Bacterial wilt, which is a major soil-borne disease with widespread occurrence, poses a severe danger in the field of tobacco production. However, there is very limited knowledge on bacterial wilt-induced microecological changes in the tobacco root system and on the interaction between Ralstonia solanacearum and fungal communities in the rhizosphere soil. Thus, in this study, changes in fungal communities in the rhizosphere soil of tobaccos with bacterial wilt were studied by 18S rRNA gene sequencing. The community composition of fungi in bacterial wilt-infected soil and healthy soil in two tobacco areas (Gengma and Boshang, Lincang City, Yunnan Province, China) was studied through the paired comparison method in July 2019. The results showed that there were significant differences in fungal community composition between the rhizosphere soil of diseased plants and healthy plants. The changes in the composition and diversity of fungal communities in the rhizosphere soil of tobaccos are vital characteristics of tobaccos with bacterial wilt, and the imbalance in the rhizosphere microecosystem of tobacco plants may further aggravate the disease.

In Vitro Sensitivity to Metalaxyl of Phytophthora parasitica var. nicotianae Isolates from Burley Tobacco in Korea

  • Kang, Yue-Gyu
    • The Plant Pathology Journal
    • /
    • v.16 no.4
    • /
    • pp.222-226
    • /
    • 2000
  • In disease surveys from 1986 ti 1998, disease incidence of tobacco black shank was gradually increased in burley tobacco from 1996. To study the causes of the disease occurrence, one hundred and fourteen isolates of Phytophthora parasitica var. nicotianae (Ppn) were collected from burley tobacco-growing areas in the southern part of Korea during 1996-1997, and tested in vitro for meatlaxyl sensitivity which was determined by measuring the mycelial growth on corn meal agar (CMA) amended with metalaxyl. Of the tested isolates, 78.1% showed sensitive to metalaxyl, having $\textrm{ED}_{50}$ values less than 1.0 $\mu\textrm{g}/$\textrm{ml}, while 1.7% was resistant weth $\textrm{ED}_{50}$ greater than 100 $\mu\textrm{g}/$\textrm{ml}. Ppn isolates from three provinces, Chungnam, Chonbuk and Chonnam showed similar distributions of metalaxyl sensitivity. Metalaxyl-resistant isolates were not significantly different from metalaxyl-sensitive ones in mycelial growth rate, chlamydospore formation capacity and size of the spore, and pathogenicity on tobacco plant (cv. Burley 21). These results suggest that the metalaxyl-resistant Ppn in burley tobacco may be one of the major factors to cause the higher occurrence of the tobacco black shank in the burley tobacco-growing area.

  • PDF

Systemic Resistance and Expression of the Pathogenesis-Related Genes Mediated by the Plant Growth-Promoting Rhizobacterium Bacillus amyloliquefaciens EXTN-1 Against Anthracnose Disease in Cucumber

  • Park, Kyung-Seok;Ahn, Il-Pyung;Kim, Choong-Hoe
    • Mycobiology
    • /
    • v.29 no.1
    • /
    • pp.48-53
    • /
    • 2001
  • Plants have the ability to acquire an enhanced level of resistance to pathogen attack after being exposed to specific biotic stimuli. To obtain plant growth-promoting rhizobacteria inducing resistance against cucumber anthracnose by Colletotrichum orbiculare, more than 800 strains of rhizobacteria were screened in the greenhouse. Among these strains, Bacillus amyloliquefaciens solate EXTN-1 showed significant disease control efficacy on the plants. Induction of pathogenesis-related(PR-la) gene expression by EXTN-1 was assessed using tobacco plants transformed with PR-1a::$\beta$-glucuronidase(GUS) construct. GUS activities of tobacco treated with EXTN-1 and salicylic acid-treated transgenic tobacco were significantly higher than those of tobacco plants with other treatments. Gene expression analyses indicated that EXTN-1 induces the accumulation of defense-related genes of tobacco. The results showed that some defense genes are expressed by the treatment with EXTN-1 suggesting the similar resistance mechanism by salicylic acid.

  • PDF