• 제목/요약/키워드: titanium-ion

검색결과 190건 처리시간 0.023초

Composite Target으로 증착된 Ti-silicide의 현성에 관한 연구[II] (The Study of Formation of Ti-silicide deposited with Composite Target [II])

  • 최진석;백수현;송영식;심태언;이종길
    • 한국재료학회지
    • /
    • 제1권4호
    • /
    • pp.191-197
    • /
    • 1991
  • Composite $TiSi_{2.6}$ target으로 부터 Ti-silicide를 형성시 단결정 Si기판과 다결정 Si내의 dopant의 확산 거동, 그리고 Ti-silicide 박막의 표면 거칠기를 secondary ion mass spectrometry (SIMS), 4-point probe, X-선 회절 분석, 표면 거칠기 측정을 통해 조사하였다. X-선 회절 분석결과 중착된 직후의 중착막은 비정질이었고, 단결정 Si기판에 증착된 막은 $800^{\circ}C$에서 20초간 급속 열처리 시 orthorhombic $TiSi_2$(C54 구조)로 결정화가 이루어졌다. 단결정 Si 기판과 다결정 Si에서 Ti-silicide 충으로의 dopant의내부 확산은 거의 발생하지 않았으며, 주입된 불순물들은 Ti-silicide/Si 계면 근처의 단결정 Si이나 다결정 Si 내부에 존재하고 있었다. 또한 형성된 Ti-silicide 박막의 표면 거칠기는 16-22nm이었다.

  • PDF

양극화 타이타늄 표면처리가 골모세포 증식에 미치는 영향 (The effect of implant surface treated by anodizing on proliferation of the rat osteoblast)

  • 허인식;박준봉;권영혁;허익;김형선;조병원;조원일
    • Journal of Periodontal and Implant Science
    • /
    • 제33권3호
    • /
    • pp.499-518
    • /
    • 2003
  • The surface characteristics of titanium have been shown to have an important role in contact ossseointegration around the implant. Anodizing at high voltage produces microporous structure and increases thickness of surface titanium dioxide layer. The aim of present study was to analyse the response of rat calvarial osteoblast cell to commercially pure titanium and Ti-6A1-4V anodized in 0.06 mol/l ${\beta}$-glycerophosphate and 0.03 mol/l sodium acetate. In this study, rat calvarial osteoblasts were used to assay for cell viability and cell proliferation on the implant surface at 1,2,4,7 days. 1. Surface roughness was 1.256${\mu}m$ at 200V, and 1.745${\mu}m$ at 300V. 2. The thickness of titanium oxide layer was increased 1 ${\mu}m$ with the increase of 50V. 3. The proliferation rate of osteoblastic cells was increased with the increase of the surface roughness and the thickness of titanium oxide layer. 4. There was no difference in cell viability and cell proliferation between commercially pure titanium and Ti-6A1-4V anodized at the same condition. In conclusion, the titanium surface modified by anodizing was biocompatible, produced enhanced osteoblastic response. The reasons of enhanced osteoblast response might be due to reduced metal ion release by thickened and stabilized titanium dioxide layer and microporous rough structures.

스퍼터링 조건이 티탄산화물박막의 전기적 착색 특성에 미치는 영향 (The Effect of Sputtering Conditions on the Electrochromic Properties of Titanium Oxide Thin Films)

  • 이길동
    • 한국태양에너지학회 논문집
    • /
    • 제26권4호
    • /
    • pp.55-61
    • /
    • 2006
  • Titanium oxide ($TiO_2$) films are deposited on the indium tin oxide (ITO) substrate in an $Ar/O_2$ atmosphere by using reactive RF (Radio Frequency) magnetron sputtering technique, and Electrochromic properties and durability of $TiO_2$ films deposited at different preparation conditions are investigated by using UV-VIS spectrophotometer and cyclic voltammetry Li+ interalation/deintercalation in $TiO_2$ films shows that the electrochromic properties and durability of as-deposited films strongly depend on gas pressure $TiO_2$ films formed in our sputtering conditions are found to remain transparent, irrespective of their Li+ ion contents. The optimum sputtering conditions for film as passive counter electrode in electrochromic devices are working pressure of $1.0\;{\times}\;10^{-2}\;torr$ and oxygen flow raes of $10{\sim}15\;sccm$, respectively.

Methylthymolblue(MTB)에 依한 Ti(IV)의 吸光光度分析 (Spectrophotometric Determination of Ti(IV) by means of Methylthymolblue(MTB) Complex)

  • 박두원;이종남
    • 대한화학회지
    • /
    • 제7권4호
    • /
    • pp.299-303
    • /
    • 1963
  • A method of the colorimetric determination of titanium has been developed, based on the fact (IV) forms a stable blue complex with methylthymolblue(MTB) which is suitable for spectrophotometric determination of titanium in the concentration range of 0.2 to 22 $\mu$g per ml as $TiO_2$. The determination was carried out in the solution of pH range of 2.6 to 3.6, and the absorbancy of complex was at 600m$\mu$ with Coleman spectrophotometer. Titanium forms a 1:1 complex with MTB, which has a molar absorptivity, $1.1{\times}10^4$ at 600m\mu$. The effects of hydrogen ion concentration, reagent concentration, stability of complex, and hydrolysis were studied. Most of cations do not interfere seriously; however, many of anions such as oxalate, citrate, phosphate, chloride interfere in this determination.

  • PDF

Durability Improvement of Electrochromic Tungsten Oxides Films

  • Yang, J.Y.;Kim, J.W.;Kang, G.H.;K.D.Ko;Lee, G.D.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.157-157
    • /
    • 1999
  • Electrochromic tungsten oxide films were prepared by the electron beam deposition, and the dependence of the electrochemical stability and the optical properties on the titanium concentration, and on the annealing temperature, that was investigated. coloring and bleaching experiments were repeated by cyclic voltammetry in a propylene carbonate solution of LiClO4. Spectrometry was used to assess the stability of the transmittance in the degraded films. Tungsten oxide films with titanium contents of about 10~15 mol% were found to be most stable, undergoing the least degradation during the repeated for coloring and bleaching cycles. The reason for this small amount of degradation was the reduction of lithium ion trapping sites in the films, which results in an increased durability. Tungsten oxide films with titanium contents of about 20 mol% were annealed at 20$0^{\circ}C$ for 1 hour, and this results showed that durability of films were increased.

  • PDF

HCD이온플레이팅 방법을 이용한 zzTiC코팅에 관한 연구 (A Study on the TiC Coating Using Hollow Cathode Discharge Ion Plating)

  • 김인철;서용운;황기웅
    • 대한전기학회논문지
    • /
    • 제41권8호
    • /
    • pp.875-882
    • /
    • 1992
  • Titanium carbide(TiC) films, known as having excellent characteristics of resistance to wear and corrosion, were deposited on SUS-304 sheets using HCD(Hollow Cathode Discharge) reactive ion plating with acetylene gas as the reactant gas. The characteristics of TiC films were examined by X-ray diffraction, micro-Vickers hardness tester, ${\alpha}$-step, SEM(Scanning Electron Spectroscopy), ESCA(Electron Spectroscopy for Chemical Analysis), and AES(Auger Electron Spectroscopy) and the results were discussed with regard to the changes of various deposition conditions(bias voltage, acetylene flow rate, temperature).

Evaluation of antibacterial activity and osteoblast-like cell viability of TiN, ZrN and $(Ti_{1-x}Zr_x)N$ coating on titanium

  • Ji, Min-Kyung;Park, Sang-Won;Lee, Kwangmin;Kang, In-Chol;Yun, Kwi-Dug;Kim, Hyun-Seung;Lim, Hyun-Pil
    • The Journal of Advanced Prosthodontics
    • /
    • 제7권2호
    • /
    • pp.166-171
    • /
    • 2015
  • PURPOSE. The aim of this study was to evaluate antibacterial activity and osteoblast-like cell viability according to the ratio of titanium nitride and zirconium nitride coating on commercially pure titanium using an arc ion plating system. MATERIALS AND METHODS. Polished titanium surfaces were used as controls. Surface topography was observed by scanning electron microscopy, and surface roughness was measured using a two-dimensional contact stylus profilometer. Antibacterial activity was evaluated against Streptococcus mutans and Porphyromonas gingivalis with the colony-forming unit assay. Cell compatibility, mRNA expression, and morphology related to human osteoblast-like cells (MG-63) on the coated specimens were determined by the XTT assay and reverse transcriptase-polymerase chain reaction. RESULTS. The number of S. mutans colonies on the TiN, ZrN and $(Ti_{1-x}Zr_x)N$ coated surface decreased significantly compared to those on the non-coated titanium surface (P<0.05). CONCLUSION. The number of P. gingivalis colonies on all surfaces showed no significant differences. TiN, ZrN and $(Ti_{1-x}Zr_x)N$ coated titanium showed antibacterial activity against S. mutans related to initial biofilm formation but not P. gingivalis associated with advanced periimplantitis, and did not influence osteoblast-like cell viability.

Electrochemical Study of Three Stainless Steel Alloys and Titanium Metal in Cola Soft Drinks

  • Peralta-Lopez, D.;Sotelo-Mazon, O.;Henao, J.;Porcayo-Calderon, J.;Valdez, S.;Salinas-Solano, G.;Martinez-Gomez, L.
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권4호
    • /
    • pp.294-306
    • /
    • 2017
  • Stainless steels and titanium alloys are widely used in the medical industry as replacement materials. These materials may be affected by the conditions and type of environment. In the same manner, soft drinks are widely consumed products. It is of interest for dental industry to know the behavior of medical-grade alloys when these are in contact with soft drinks, since any excessive ion release can suppose a risk for human health. In the present study, the electrochemical behavior of three stainless steel alloys and pure titanium was analyzed using three types of cola soft drinks as electrolyte. The objective of this study was to evaluate the response of these metallic materials in each type of solution (cola standard, light and zero). Different electrochemical techniques were used for the evaluation of the alloys, namely potentiodynamic polarization, linear polarization, and open-circuit potential measurements. The corrosion resistance of the stainless-steel alloys and titanium in the cola soft drinks was provided by the formation of a stable passive film formed by metal oxides. Scanning electron microscopy was used as a complementary technique to reveal corrosion phenomena at the surface of the materials evaluated.