• Title/Summary/Keyword: titanium sponge

Search Result 15, Processing Time 0.023 seconds

Hydrogenation Behavior of Sponge Titanium (스폰지 티타늄의 수소화 거동)

  • Park, Ji-Hwan;Lee, Dong-Won;Kim, Jong-Ryoul
    • Journal of Powder Materials
    • /
    • v.17 no.5
    • /
    • pp.385-389
    • /
    • 2010
  • Titanium powders have been usually produced by de-hydrogenating treatment in vacuum with titanium hydride ($TiH_2$) powders prepared by milling of hydrogenated sponge titanium, $TiH_x$. The higher stoichiometry of x in $TiH_x$, whose maximum value is 2, is achieved, crushing behavior is easier. $TiH_x$ powder can be, therefore, easy to manufactured leading to obtain higher recovery factor of it. In addition, contamination of the powder can also minimized by the decrease of milling time. In this study, the hydrogenation behavior of sponge titanium was studied to find the maximum stoichiometry. The maximum stoichiometry in hydride formation of sponge titanium could be obtained at $750^{\circ}C$ for 2 hrs leading to the formation of $TiH_{{\sim}1.99}$ and the treating temperatures lower or higher than $750^{\circ}C$ caused the poor stoichiometries by the low hydrogen diffusivity and un-stability of $TiH_x$, respectively. Such experimental behavior was compared with thermodynamically calculated one. The hydrogenated $TiH_{1.99}$ sponge was fully ball-milled under -325 Mesh and the purity of pure titanium powders obtained by de-hydrogenation was about 99.6%.

Effect of TiCl4 Feeding Rate on the Formation of Titanium Sponge in the Kroll Process (Kroll법에 의한 타이타늄 스펀지 생성에 미치는 TiCl4 투입속도의 영향)

  • Lee, Jae Chan;Sohn, Ho Sang;Jung, Jae Young
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.10
    • /
    • pp.745-751
    • /
    • 2012
  • The Kroll process for magnesium reduction of titanium tetrachloride is used for mass production of titanium sponge. The present study was conducted in a lab scale reactor to develop a better understanding of the mechanism of titanium sponge formation in the Kroll reactor with respect to reaction degrees and the feeding rate of $TiCl_4$. The $MgCl_2$ produced during the initial stage of the reaction was not sunk into the molten magnesium, but covered the surface of the molten magnesium. As a result, subsequently fed $TiCl_4$ reacted with Mg exposed on the edge of molten $MgCl_2$ in the crucible. Therefore, titanium sponge grew toward the center of the crucible from the edge. The temperature of the molten magnesium increased remarkably with the increasing feeding rate of $TiCl_4$. Consequently, fed $TiCl_4$ reacted at the upper side of the crucible with evaporated Mg, and produced titanium on the upper surface of the crucible wall, which increased considerably with the feeding rate of $TiCl_4$.

Current Status of Titanium Smelting Technology for Powder Metallurgy (분말야금을 위한 타이타늄 제련기술 현황)

  • Sohn, Ho-Sang
    • Journal of Powder Materials
    • /
    • v.28 no.2
    • /
    • pp.164-172
    • /
    • 2021
  • Titanium is the ninth most abundant element in the Earth's crust and is the fourth most abundant structural metal after aluminum, iron, and magnesium. It exhibits a higher specific strength than steel along with an excellent corrosion resistance, highlighting the promising potential of titanium as a structural metal. However, titanium is difficult to extract from its ore and is classified as a rare metal, despite its abundance. Therefore, the production of titanium is exceedingly low compared to that of common metals. Titanium is conventionally produced as a sponge by the Kroll process. For powder metallurgy (PM), hydrogenation-dehydrogenation (HDH) of the titanium sponge or gas atomization of the titanium bulk is required. Therefore, numerous studies have been conducted on smelting, which replaces the Kroll process and produces powder that can be used directly for PM. In this review, the Kroll process and new smelting technologies of titanium for PM, such as metallothermic, electrolytic, and hydrogen reduction of TiCl4 and TiO2 are discussed.

A study on Titanium Hydride Formation of Used Titanium Aircraft Scrap for Metal Foaming Agents

  • Hur, Bo-Yong;Ahn, Duck-Kyu;Kim, Sang-Youl;Jeon, Sung-Hwan;Park, Su-Han;Ahn, Hyo-Jun;Park, Chan-Ho;Yoon, Ik-Sub
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.209-212
    • /
    • 2001
  • Aircraft industry is developed very fast so titanium scrap was generated to manufacture. Titanium scrap was wasted and used to deoxidize cast iron so we are study recycling of it. In this research were studied that metal hydride of reacted in hydrogen chamber of AMS4900, 4901, return scrap titanium alloy and sponge titanium granule. The temperature of hydrogenation was 40$0^{\circ}C$ in the case of pure sponge titanium but return scrap titanium alloy were step reaction temperature at 40$0^{\circ}C$ and 50$0^{\circ}C$, and after the hydride of titanium alloy were crushed by ball mill for 5h. Titanium hydride contains to 4wt.% of hydrogen theoretically as theory. It was determined by heating and cooling curve in reaction chamber. The result of XRD was titanium hydride peak only that it was similar to pure titanium. Titanium hydride Powder particle size was about 45${\mu}{\textrm}{m}$, and recovery ratio was 95w% compared with scrap weight for a aluminum foam agent.

  • PDF

A Study on the Synthesis of Titanium Hydride by SHS(Self-propagating High-temperature Synthesis) Method and the Preparation of Titanium Powder (SHS법에 의한 티타늄 수소화물 합성 및 티타늄 분말 제조에 관한 연구)

  • Ha, Ho;Park, Seung-Soo;Lee, Hee-Cheol
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.263-273
    • /
    • 1994
  • Titanium powder prepared by dehydrogenating the titanium hydride which is synthesized by reacting Ti-sponge (99.67%) with hydrogen using the self-propagating high-temperature synthesis method. In the synthesis of titanium hydride, the particle size of the product was found dependent on the amount of hydrogen incorporated into the titanium such that the particle size of titanium hydride decreased with increasing hydrogen pressure and after-burn time. In the dehydrogenation process, as the dehydrogenation time increase, the particle size of titanium powder increased due to partial melting and sintering of titanium particles.

  • PDF

Production Technology of Titanium by Kroll Process (Kroll법에 의한 타이타늄의 제조기술)

  • Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.29 no.4
    • /
    • pp.3-14
    • /
    • 2020
  • Titanium sponge is industrially produced by the Kroll process. In order to understand the importance of the emerging smelting and recycling process, it is necessary to review the conventional production process of titanium. Therefore this paper provides a general overview of the conventional titanium manufacturing system mainly by the Kroll process. The Kroll process can be divided into four sub-processes as follows: (1) Chlorination of raw TiO2 with coke, by the fluidized bed chlorination or molten salt chlorination (2) Magnesium reduction of TiCl4 and vacuum distillation of MgCl2 and Mg by reverse U-type or I-type with reduction-distillation integrated retorts (3) Electrolysis process of MgCl2 by monopolar cells or multipolar cells to electrolyze into chlorine gas and Mg. (4) Crushing and melting process in which sponge titanium is crushed and then melted in a vacuum arc furnace or an electron beam furnace Although the apparatus and procedures have improved over the past 80 years, the Kroll process is the costly and time-consuming batch operation for the reduction of TiCl4 and the separation of MgCl2.

Current Status of Titanium Recycling Technology (타이타늄의 리사이클링 기술 현황)

  • Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.26-34
    • /
    • 2021
  • Titanium is the fourth most abundant structural metal, after aluminum, iron, and magnesium. However, it is classified as a 'rare metals', because it is difficult to smelt. In particular, the primary titanium production process is highly energy-intensive. Recycling titanium scraps to produce ingots can reduce energy consumption and CO2 emissions by approximately 95 %. However, the amount of metal recycled from scrap remains limited of the difficulty in removing impurities such as iron and oxygen from the scrap. Generally, high-grade titanium and its alloy scraps are recycled by dilution with a virgin titanium sponge during the remelting process. Low-grade titanium scrap is recycled to ferrotitanium (cascade recycling). This paper provides an overview of titanium production and recycling processes.

New Process for Ti Alloy Powder Production by Using Gas Atomization

  • Fujita, Makoto;Arimoto, Nobuhiro;Nishioka, Kazuo;Miura, Hideshi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.12-13
    • /
    • 2006
  • The spherical and high quality Titanium fine powder "Tilop" has been produced with gas atomization furnace, Sumitomo Titanium Corporation originally designed. Recently, a new process which can produce Ti-alloy(Ti-6Al-4V) powders by utilizing our gas atomization process, of which raw material is sponge titanium pre-mixed with alloy chips or granules has been also developed. The particle size of gas atomized Ti-alloy powder and the mechanical properties of sintered Ti-alloy compacts prepared by metal injection molding were discussed in this study.

  • PDF

A Study on the Formation Mechanism of Titanium Sponge in the Kroll Process (Kroll법에 의한 타이타늄 스폰지 생성기구에 관한 연구)

  • Jung, Jae-Young;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.26 no.5
    • /
    • pp.54-60
    • /
    • 2017
  • In this study, we investigated the effect of $TiCl_4$ injection time on the Kroll reaction at a given weight ratio of $TiCl_4$ and Mg. The reduction reaction was investigated by measuring the temperature change according to $TiCl_4$ injection time and observing the cross section and appearance of the Ti sponge after the reaction. The temperature increment due to Kroll reaction heat generation was found to be linearly proportional to the $TiCl_4$ feed rate. In the graph of $TiCl_4$ injection time and reduction tank temperature, initial temperature peaks were observed irrespective of the injection conditions. This is interpreted to mean a temporary interruption of reaction due to $MgCl_2$ formation after the initial Kroll reaction. In addition, when the cross section of the sponge was observed, a large amount of spherical Mg particles was observed in $MgCl_2$. We can infer that this is the process of continuously feeding the unreacted Mg surface, so that a continuous Kroll reaction takes place. The sponge appearance showed that the coalescence or growth of the Kroll reacted Ti particles can be controlled by the cooling rate.