• 제목/요약/키워드: titanium dental implant

검색결과 322건 처리시간 0.032초

항균제 처리한 titanium 표면의 치태형성 억제효과 (Inhibition of Plaque Formation on the Titanium Surface by Anti-bacterial Varnish)

  • 정현주;이상현;김영준
    • Journal of Periodontal and Implant Science
    • /
    • 제30권4호
    • /
    • pp.707-727
    • /
    • 2000
  • 매식된 인공치아의 성공을 위해서는 적절한 교합과 수동적 적합성을 갖는 보철물의 제작과 구강내 노출 직후부터의 세균성 치태조절이 요구된다. 본 연구는 전처리(passivation과 tridodecyl - methyl - ammonium chloride(TDMAC) 처리)가 다른 타이타늄 표 면에 chlorhexidine varnish와 테트라사이클린 을 도포시 약제의 방출역학을 알아보고 구강내 치태형성의 억제정도를 평가하기 위하여 시행 되었다. 이를 위해 방출용액으로 인산완충액 성분의 인조타액을 1일${\sim}$1개월간 매일 교환하여 약제농도를 측정하고 타이타늄 박막에 잔류한 약제 활성을 측정하였으며 항균제 도포한 타이타늄 원판을 부착한 장치를 구강내 위치시킨 1일${\sim}$3주 후 원판을 제거하여 주사전자현미경으로 세균 부착상을 관찰하였다. 테트라사이클린은 TDMAC 처리된 표면에서 $10{\sim}18$일까지 유효농도로 방출되었고 표면의 유효 항균 활성은 $3{\sim}4$주간 유지되었으며, chlorhexidine varnish 도포 시에는 TDMAC 전처리시 초기에 $3{\sim}7$일 간 증가한 유효 항균 활성을 방출하여 매식지대치 등에 이러한 항균제도포 시 매식치 주위환경에 항균활성 공급원으로 작용할 수 있음을 보였다. 주사현미경적 관찰시 모든 타이타늄 표면에서 구강내 위치 30분 후에는 세균이 부착되어 있지 않고 타액 단백질 성분에서 유래한 것으로 보이는 피막물질이 표면을 부분 또는 전면에 걸쳐 덮고 있었다. 구강내 노출 2시간 후 항균제 미도포 표본들에는 약간의 구균이 단층으로, $1{\sim}3$일 후에는 부분적으로 두꺼운 세균층을 형성하였고 7일 후에는 표면전체에 걸쳐 세균층이 덮여있었으며 주로 구균과 약간의 간균이 주종을 이루었다. 항균제 도포시 구강내 노출 1주일 이전까지는 미도포군에 비해 치태형성이 지연되는 경향을 보였지만 2주 이후에는 세균 수나 치태형성 양상이 유사하였다. 이 연구로부터 항균제 도포시 1주일 이전의 초기 치태형성을 감소시킬 수 있음을 알 수 있었으며 이러한 연구결과는 타이타늄 임프란트 지대치 표면에 항균제의 도포가 임상적으로 유용할 수 있음을 시사하였다.

  • PDF

좁은 치조제를 가진 하악 구치부에서 지르코늄-티타늄 합금의 작은 직경 임플란트 사용 증례 (Titanium-zirconium alloy narrow-diameter implants for the rehabilitation of horizontally deficient mandibular posterior edentulous ridges)

  • 이인혜;박영범;한동후
    • 대한치과보철학회지
    • /
    • 제55권2호
    • /
    • pp.212-217
    • /
    • 2017
  • 임플란트의 협설 측으로 잔존 골조직이 불충분할 경우 골증대술을 시행하지 않기 위해서는 작은 직경의 임플란트를 사용할 수 있다. 작은 직경 임플란트의 경우는 파절 저항성이 낮고, 골과 임플란트의 접촉 면적이 좁아 구치부에는 부적절한 것으로 여겨져 왔다. 최근의 연구에서는 새로운 임플란트 합금의 개발 및 표면 처리방법의 발전으로 구치부에서도 표준 직경 임플란트와 유사한 성공률이 보고되고 있다. 이 증례에서는 구치부 상실 부위 잔존골의 협설 폭이 부족한 상황에서 작은 직경 임플란트를 이용하여 심미적, 기능적으로 만족스러운 치료 결과를 보였다. 현재까지 추적 검사 기간은 4년 이상 되었고 특이할만한 합병증 없이 유지되었다. 향후 장기적인 안정성에 대한 추가적인 연구가 필요할 것으로 사료된다.

Clinical reliability of zirconium abutment in implant restorations in the English and Korean literature

  • Yu, Su-Been;Song, Bong-Gyu;Cheon, Kyeong-Jun;Kim, Ju-Won;Kim, Young-Hee;Yang, Byoung-Eun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제40권
    • /
    • pp.26.1-26.10
    • /
    • 2018
  • Background: This study aimed to evaluate the mechanical, biological, and esthetic stability of a zirconium abutment according to evidence-based dentistry. Main text: An electronic search was performed. Domestic studies were found using the keywords "zirconia abutments" and "zirconium abutment" in KMbase, KoreaMed, and the National Assembly Library, and international studies were found using the same keywords in PubMed. All identified studies were divided by evidence level from the viewpoint of the research type utilizing the evidence-based review manual. A total of 102 domestic studies (with Korean language) were found, and 9 of these studies were selected. In these nine studies, 3 had evidence level 3 and 6 had evidence level 4. A total of 97 international studies (with English language) were found, and 19 were selected. Among these 19 studies, 5 had evidence level 2 and 7 had evidence level 3, whereas the remainder had evidence level 4. According to the studies, zirconium abutments are mechanically, biologically, and esthetically stable, but the evidence level of these studies is low, and the follow-up duration is no longer than 5 years. Conclusions: All examined studies verified the mechanical stability of zirconium abutments for a period no longer than 5 years. Therefore, a long-term clinical observation is needed. Zirconium abutments are thought to be biologically stable, but they are not superior to titanium abutments. As the esthetic stability of such abutments had a low evidence level in the studies that examined here, a much higher evidence level is needed.

Rodent peri-implantitis models: a systematic review and meta-analysis of morphological changes

  • Ren Jie Jacob Chew;Jacinta Xiaotong Lu;Yu Fan Sim;Alvin Boon Keng Yeo
    • Journal of Periodontal and Implant Science
    • /
    • 제52권6호
    • /
    • pp.479-495
    • /
    • 2022
  • Purpose: Rodent models have emerged as an alternative to established larger animal models for peri-implantitis research. However, the construct validity of rodent models is controversial due to a lack of consensus regarding their histological, morphological, and biochemical characteristics. This systematic review sought to validate rodent models by characterizing their morphological changes, particularly marginal bone loss (MBL), a hallmark of peri-implantitis. Methods: This review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. A literature search was performed electronically using MEDLINE (PubMed), and Embase, identifying pre-clinical studies reporting MBL after experimental peri-implantitis induction in rodents. Each study's risk of bias was assessed using the Systematic Review Center for Laboratory animal Experimentation (SYRCLE) risk of bias tool. A meta-analysis was performed for the difference in MBL, comparing healthy implants to those with experimental peri-implantitis. Results: Of the 1,014 unique records retrieved, 23 studies that met the eligibility criteria were included. Peri-implantitis was induced using 4 methods: ligatures, lipopolysaccharide, microbial infection, and titanium particles. Studies presented high to unclear risks of bias. During the osseointegration phase, 11.6% and 6.4%-11.3% of implants inserted in mice and rats, respectively, had failed to osseointegrate. Twelve studies were included in the meta-analysis of the linear MBL measured using micro-computed tomography. Following experimental peri-implantitis, the MBL was estimated to be 0.25 mm (95% confidence interval [CI], 0.14-0.36 mm) in mice and 0.26 mm (95% CI, 0.19-0.34 mm) in rats. The resulting peri-implant MBL was circumferential, consisting of supra- and infrabony components. Conclusions: Experimental peri-implantitis in rodent models results in circumferential MBL, with morphology consistent with the clinical presentation of peri-implantitis. While rodent models are promising, there is still a need to further characterize their healing potentials, standardize experiment protocols, and improve the reporting of results and methodology.

골유착 이전에 악정형력이 임프란트 주위조직에 미치는 영향 (THE EFFECT OF DENIAL ORTHOPEDIC FORCE TO IMPLANTS ON BONE TISSUE BEFORE COMPLETE OSSEOINTEGRATION)

  • 김영호;이철원
    • 대한치과교정학회지
    • /
    • 제28권3호
    • /
    • pp.453-459
    • /
    • 1998
  • 저자들은 임프란트 매식 후 골유착을 위한 초기 치유기간 이전에 악정형력이 임프란트 주위 조직에 미치는 영향을 관찰하기 위하여 가토 12마리의 양측 대퇴골에 임프란트를 식립하고 2주, 4주 그리고 6주후에 각각 300g의 악정형력을 Ni-Ti close coil spring을 이용하여 매식된 임프란트에 4주동안 가하고 관찰한 후 다음과 같은 결론을 얻었다. 1. 모든 실험군의 임프란트는 4주간의 악정형력 적용후에도 안정된 견고성을 유지하였다. 2. 2주 실험군에서 대조군에 비해 임프란트와 골조직 사이의 섬유조직 증식이 많이 관찰 되었으나 특이할만한 염증소견은 관찰되지 않았다. 3. 4주 실험군, 대조군에서는 2주 실험군, 대조군과 각각 비교하였을 때 보다 많은 양의 골재생이 관찰 되었으며 실험군과 대조군 모두에서 임프란트와 골조직 사이의 섬유조직은 관찰하기 힘들었다. 4. 6주에서는 실험군과 대조군 사이에 뚜렷한 차이가 발견되지 않았다. 이상의 결과로 보아 임프란트 주위의 골조직 재생이 충분하지 않아도 골의 양과 질이 우수해 임프란트 식립시 견고한 초기고정을 얻을 수 있다면 골유착이 완성되는 초기 치유기간 이전에도 치과교정적 고정원으로 사용가능할 것으로 사료된다.

  • PDF

임플란트 표면의 Ca-P 코팅 방법이 MG63 골모유사세포 반응에 미치는 영향에 대한 in vitro 연구 (The effect of Ca-P coatings of anodized implant surface on response of osteoblast-like cells in vitro)

  • 김일연;정성민;황순정;신상완
    • 대한치과보철학회지
    • /
    • 제47권4호
    • /
    • pp.376-384
    • /
    • 2009
  • 연구목적: 본 연구에서는 양극산화 임플란트 표면에 서로 다른 두 가지 방법, Ion beam-assisted deposition (IBAD)법과 Sol-gel법으로 Ca-P 코팅한 임플란트 시편에 골모세포를 배양하였을 때 세포의 증식, 분화, 형태에 어떠한 영향을 미치는지 조사하고자 한다. 연구재료 및 방법: 지름 10 mm, 두께 2 mm 인 상업용 순수 titanium grade IV 재질의 디스크를 제작하였고, 모든 시편은 acetone, 70% ethanol, 증류수에서 각각 10분씩 세척 후 건조하였다. 모든 표면은 300 V의 constant voltage하에서 양극 산화 (anodized)시킨다. 실험군은 양극산화 임플란트 표면에 각각 IBAD법과 Solgel법으로 Ca-P 코팅하였다. 각 표면의 미세표면 거칠기(Ra)를 측정하였고, SEM을 통해 표면의 형상을 관찰하였다. 골모세포을 배양한 후 각 표면군의 세포 증식, ALP 활성도 및 RT-PCR를 통한 골세포 분화 능력 검증을 하였으며, SEM을 통해 세포의 형상도 확인하였다. 통계분석은 SPSS (version 12.0) 프로그램을 이용하여 Kruskal-Wallis Test로 각 군의 유의성을 검증하였다 ($\alpha$=0.05). 결과: IBAD법으로 Ca-P 코팅한 표면이 Sol-gel법으로 Ca-P 코팅한 표면보다 표면 거칠기 (Ra) 값이 더 크게 나타났다 (P<.05). IBAD법으로 Ca-P 코팅한 표면이 Sol-gel법으로 Ca-P 코팅한 표면 보다 세포 증식이 더 활발하고 골세포 조기 분화 정도를 확인 할 수 있는ALP 활성도 또한 더 높게 나타났다 (P<.05). SEM 관찰 결과IBAD법으로 Ca-P 코팅한 표면에 골모세포들이 친화성을 띄면서 안정적으로 부착되었다. 결론: IBAD법으로 Ca-P 코팅한 표면이 Sol-gel법으로 Ca-P 코팅한 표면보다 더 우수한 세포 반응을 보였다. IBAD법으로 Ca-P 코팅한 표면의 세포들은 증식이 잘 이루어지고 잘 분화된 골모세포 형상을 보이고 ALP 활성도 또한 높아 골 형성을 증가시켜 높은 골-임플란트 접촉을 보일 것이다.

타이타늄 임플랜트 시편 내부에 설치한 자석의 자성강도에 따른 골형성 변화 (THE CHANGE OF BONE FORMATION ACCORDING TO MAGNETIC INTENSITY OF MAGNET PLACID INTO TITANIUM IMPLANT SPECIMENS)

  • 황윤태;이성복;최대균;최부병
    • 대한치과보철학회지
    • /
    • 제43권2호
    • /
    • pp.232-247
    • /
    • 2005
  • Purpose. The purposes of this investigation were to discover the possibility of clinical application in the areas of dental implants and bone grafts by investigating the bone formation histologically around specimen which was depending on the intensity of magnetic field of neodymium magnet inside of the specimens. Material and method. 1. Measurement of magnetic intensity - placed the magnet inside of the specimen, and measured the intensity of magnetic field around the 1st thread and 3rd thread of specimen 20 times by using a Gaussmeter(Kanetec Co., Japan). 2. Surgical Procedure - Male rabbit was anesthetised by constant amount of Ketamine (0.25ml/kg) and Rompun (0.25ml/kg). After incising the flat part of tibia, and planted the specimens of titanium implant, control group was stitched without magnet, while experimental groups were placed a magnedisc 500(Aichi Steel Co., Japan) or magnedisc 800(Aichi Steel Co., Japan) into it, fixed by pattern resin and stitched. 3. Management after the surgery - In order to prevent it from the infection of bacteria and for antiinflammation, Gentamycin and Ketopro were injected during 1 week from operation day, and dressed with potadine. 4. Preparation of histomorphometric analysis - At 2, 4 and 8 weeks after the surgery, the animals were sacrificed by excessed Ketamine, and then, specimens were obtained including the operated part and some parts of tibia, and fixed it to 10% of PBS buffer solution. After embedding specimens in Technovit 1200 and B.P solution, made a H-E stain. Samples width was 75$\mu$m . In histological findings through the optical microscope and using Kappa image base program(Olympus Co. Japan), the bone contact ratio and bone area ratio of each parts of specimens were measured and analyzed. 5. Statistical analysis - Statistical analysis was accomplished with Mann Whitney U-test. Results and conclusion. 1. In histomorphometric findings, increased new bone formation was shown in both control & experimental groups through the experiment performed for 2, 4 & 8 weeks. After 4 weeks, more osteoblasts and osteoclasts with significant bone remodeling were shown in experimental groups. 2. In histomorphometric analysis, the bone contact ratios were 38.5% for experimental group 1, 29.5% for experimental group 2 and 11.9% for control group. Experimental groups were higher than control group(p<0.05) (Fig. 6, Table IV). The bone area ratios were 60.9% for experimental group 2, 46.4% for experimental group 1 and 36.0% for control group. There was no significantly statistical difference between experimental groups and control group(p<0.05) (Fig. 8, Table VII) 3. In comparision of the bone contact ratios at each measurement sites according to magnetic intensity, experimental group 2(5.6mT) was higher than control group at the 1st thread (p<0.05) and experimental group 1 (1.8mT) was higher than control group at the 3rd thread(p<0.05) (Fig. 7, Table V, VI). 4. In comparision of the bone area ratios at each measurement sites according to magnetic intensity, experimental group 2(5.6mT) was higher than control group and experimental group 1 (4.0mT) at the 1st thread(p<0.1) and experimental group 2(4.4mT) was higher than experimental group 1 (1.8mT) at the 3rd thread(p<0.1) (Fig. 9, Table IX, X). Experiment group 2 was largest, followed by experiment group l and control group at the 3rd thread of implant. There was a significant difference at the 1st thread of control group & experiment group 2, and at 1st thread & 3rd thread of experiment group 1 & 2, and not at control group experiment group 1.(p<0.1)

Bone-like Apatite Formation on Ultrafine-Structure in Modified Electrolytic Solution

  • Jang, Jae-Myung;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.155-155
    • /
    • 2017
  • Surface modifications are commonly utilized to adjust the properties of the titanium and its alloy surface to the specific needs of the medical applications, but there are disadvantages such as poor osteoconductive properties and low adhesion of bone cell to implant surface. In order to improve these disadvantages, changes in surface properties have an important effect on osseointegration during implantation. In this paper we applied new technological method for improving a unique surface modification using the characteristic of an electrolytic Solution. Thus, in the electrolyte containing NaF in Na2SO4, TiO2 nanoporous was uniformly formed, and HAp nanoparticles were electrodeposited around the TiO2 nanopores, but in the electrolyte containing NH4F in (NH4)H2PO4, the coarse protrusions including HAp nano particles were regularly deposited onto the TiO2 barrier layer. The surface characteristics and the distributed elements and have been investigated by EDS analysis, and ultra-fine structure of surface are carried out using FE-SEM. To investigate the behavior of the anion, the analysis of chemical states was performed by XPS, and the narrow spectrums for Ti2P, Ca 2p, and P 2p seems to be almost similar depending on the characteristics of the electrolyte solution respectively. In addition, Ca 2p spectrum could be resolved into two peaks for Ca 2p3/2 and 2p1/2 at 347.4 and 351.3 eV, which are related to hydroxyapatite. And, the P peak can also be deconvoluted into two peaks for P1/2 and P3/2 levels with binding energy 134.2 and 133.4 eV, respectively. From the result of soaking test, the apatite morphologys were well-formed onto the modified surface according to the different conditions.

  • PDF

Si and Mg Coatings on the Hydroxyapatite Film Formed Ti-29Nb-xHf Alloys by Plasma Electrolyte Oxidation

  • Park, Seon-Yeong;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.152-152
    • /
    • 2017
  • Titanium and its alloys have been widely used for biomedical applications. However, the use of the Ti-6Al-4V alloy in biomaterial is then a subject of controversy because aluminum ions and vanadium oxide have potential detrimental influence on the human body due to vanadium and aluminum. Hence, recent works showed that the synthesis of new Ti-based alloys for implant application involves more biocompatible metallic alloying element,such as, Nb, Hf, Zr and Mo. In particular, Nb and Hf are one of the most effective Ti ${\beta}$-stabilizer and reducing the elastic modulus. Plasma electrolyte oxidation (PEO) is known as excellent method in the biocompatibility of biomaterial due to quickly coating time and controlled coating condition. The anodized oxide layer and diameter modulation of Ti alloys can be obtained function of improvement of cell adhesion. Silicon (Si) and magnesium (Mg) has a beneficial effect on bone. Si in particular has been found to be essential for normal bone and cartilage growth and development. In vitro studies have shown that Mg plays very important roles in essential for normal growth and metabolism of skeletal tissue in vertebrates and can be detected as minor constituents in teeth and bone. Therefore, in this study, Si and Mg coatings on the hydroxyapatite film formed Ti-29Nb-xHf alloys by plasma electrolyte oxidation has been investigated using several experimental techniques. Ti-29Nb-xHf (x= 0, 3, 7 and 15wt%, mass fraction) alloys were prepared Ti-29Nb-xHf alloys of containing Hf up from 0 wt% to 15 wt% were melted by using a vacuum furnace. Ti-29Nb-xHf alloys were homogenized for 2 hr at $1050^{\circ}C$. The electrolyte was Si and Mg ions containing calcium acetate monohydrate + calcium glycerophosphate at room temperature. The microstructure, phase and composition of Si and Mg coated oxide surface of Ti-29Nb-xHf alloys were examined by FE-SEM, EDS, and XRD.

  • PDF

Safety evaluation of atmospheric pressure plasma jets in in vitro and in vivo experiments

  • Lee, Ji-Yoon;Park, Shin-Young;Kim, Kyoung-Hwa;Yoon, Sung-Young;Kim, Gon-Ho;Lee, Yong-Moo;Seol, Yang-Jo
    • Journal of Periodontal and Implant Science
    • /
    • 제51권3호
    • /
    • pp.213-223
    • /
    • 2021
  • Purpose: The atmospheric pressure plasma jet (APPJ) has been introduced as an effective disinfection method for titanium surfaces due to their massive radical generation at low temperatures. Helium (He) has been widely applied as a discharge gas in APPJ due to its bactericidal effects and was proven to be effective in our previous study. This study aimed to evaluate the safety and effects of He-APPJ application at both the cell and tissue levels. Methods: Cellular-level responses were examined using human gingival fibroblasts and osteoblasts (MC3T3-E1 cells). He-APPJ was administered to the cells in the experimental group, while the control group received only He-gas treatment. Immediate cell responses and recovery after He-APPJ treatment were examined in both cell groups. The effect of He-APPJ on osteogenic differentiation was evaluated via an alkaline phosphatase activity assay. In vivo, He-APPJ treatment was administered to rat calvarial bone and the adjacent periosteum, and samples were harvested for histological examination. Results: He-APPJ treatment for 5 minutes induced irreversible effects in both human gingival fibroblasts and osteoblasts in vitro. Immediate cell detachment of human gingival fibroblasts and osteoblasts was shown regardless of treatment time. However, the detached areas in the groups treated for 1 or 3 minutes were completely repopulated within 7 days. Alkaline phosphatase activity was not influenced by 1 or 3 minutes of plasma treatment, but was significantly lower in the 5 minute-treated group (P=0.002). In vivo, He-APPJ treatment was administered to rat calvaria and periosteum for 1 or 3 minutes. No pathogenic changes occurred at 7 days after He-APPJ treatment in the He-APPJ-treated group compared to the control group (He gas only). Conclusions: Direct He-APPJ treatment for up to 3 minutes showed no harmful effects at either the cell or tissue level.