• 제목/요약/키워드: titanium coated implant

검색결과 92건 처리시간 0.029초

표면처리 시간에 따른 임프란트 미세구조의 변화 : $FBR^{(R)}$과 CellNest 표면 임프란트 (Micromorphometric change of implant surface conditioned with tetracycline-HCI : $FBR^{(R)}$ and CeliNest surface)

  • 창동욱;박준봉;권영혁;허익;정종혁
    • Journal of Periodontal and Implant Science
    • /
    • 제36권3호
    • /
    • pp.717-729
    • /
    • 2006
  • The present study was performed to evaluate the effect of tetracycline-BCL on the change of implant surface microstructure according to application time. Implant with pure titanium machined surface, double coated $FBR^{(R)}$ surface and oxidized CellNest surface were utilized. Implant surface was rubbed with $50mg/m{\ell}$ tetracycline-BCL solution for ${\frac{1}{2}}$, 1, $1{\frac{1}{2}}$, 2 and $2{\frac{1}{2}}$min. respectively in the test group. Then, specimens were processed for scanning electron microscopic observation. The results of this study were as follows. 1. Both test and control group showed a few shallow grooves and ridges in pure titanium machined surface implants. There were not significant differences between two groups. 2. The double coated $FBR^{(R)}$ surfaces showed fine crystalline structures. The roughness of surfaces conditioned with tetracycline-BCL was lessened relative to the application time. 3. The oxidized CellNest surfaces showed the porous structures. The surface conditioning with tetracycline-BCI influenced on its micro-morphology. In conclusion, the detoxification of the affected implant surface with $50mg/m{\ell}$ tetracycline-BCL should be applied respectively with different time according to various implant surfaces.

rhTGF-${\beta}2$/PLGA 복합체를 electrospray법으로 코팅한 타이타늄 임플란트 골 유착의 microCT 계측: a preliminary rabbit study (Osseointegration of the titanium implant coated with rhTGF-${\beta}2$/PLGA particles by electrospray: a preliminary microCT analyzing rabbit study)

  • 이우성;김성균;허성주;곽재영;이주희;박지만;박윤경
    • 대한치과보철학회지
    • /
    • 제52권4호
    • /
    • pp.298-304
    • /
    • 2014
  • 목적: 본 선행 연구는 recombinant human transforming growth factor-${\beta}2$ (rhTGF-${\beta}2$)/ poly lactic-co-glycolic acid (PLGA) 복합체를 타이타늄 임플란트에 처리하였을 때 골 유착에 미치는 영향을 알아보기 위해 시행된 것으로 토끼 모델을 사용하였다. 재료 및 방법: 8개의 임플란트를 300V에서 3분 동안 양극 산화하였다. 그 중 4개는 electrospray법으로 rhTGF-${\beta}2$/PLGA를 코팅하여 실험군으로 설정하였다. 4마리의 New Zealand rabbit의 tibiae에 1개씩의 실험군과 대조군 임플란트를 식립하였으며, 3주와 6주에 2마리씩 희생하여 micro-computed tomography(microCT) 촬영 후 분석하였다. 결과: Scanning electron microscope (SEM) 사진에서 rhTGF-${\beta}2$/PLGA 입자가 임플란트 표면에 균일하게 분산되어 있음을 확인하였다. MicroCT 분석 결과 통계적으로 유의하지는 않지만 rhTGF-${\beta}2$/PLGA를 처리한 임플란트가 bone volume/total volume (BV/TV)와 trabecular thickness (Tb.Th) 값이 더 높은 경향성을 보였으며, cross sectional view에서 더 많은 골이 형성되었음을 확인하였다. 결론: rhTGF-${\beta}2$/PLGA 표면처리된 임플란트가 주변 골의 양적 성장을 촉진시킬 수 있으며 임플란트 초기 골 유착을 증진시킬 수 있는 가능성을 보였다.

Effects of the combination of bone morphogenetic protein-2 and nano-hydroxyapatite on the osseointegration of dental implants

  • Pang, KangMi;Seo, Young-Kwon;Lee, Jong-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제47권6호
    • /
    • pp.454-464
    • /
    • 2021
  • Objectives: This study aimed to investigate the in vitro osteoinductivity of the combination of bone morphogenetic protein-2 (BMP-2) and nanohydroxyapatite (nHAp) and the in vivo effects of implants coated with nHAp/BMP-2. Materials and Methods: To evaluate the in vitro efficacy of nHAp/BMP-2 on bone formation, bone marrow-derived mesenchymal stem cells (BM-MSCs) were seeded onto titanium disks coated with collagen (Col), Col/nHAp, or Col/nHAp/BMP-2. Protein levels were determined by a biochemical assay and reverse transcriptase-polymerase chain reaction. Stem cell differentiation was analyzed by flow cytometry. For in vivo studies with mice, Col, Col/nHAp, and Col/nHAp/BMP-2 were injected in subcutaneous pockets. Titanium implants or implants coated with Col/nHAp/BMP-2 were placed bilaterally on rabbit tibias and evaluated for 4 weeks. Results: In the in vitro study, BM-MSCs on Col/nHAp/BMP-2 showed reduced levels of CD73, CD90, and CD105 and increased levels of glycosaminoglycan, osteopontin, and alkaline phosphatase activity. After 4 weeks, the Col/nHAp/BMP-2 implant showed greater bone formation than the control (P=0.07), while no differences were observed in bone implant contact and removal torque. Conclusion: These results suggest that a combination of BMP-2 and an nHAp carrier would activate osseointegration on dental implant surfaces.

표면처리 시간에 따른 임플란트 미세구조의 변화;HA와 양극산화 표면 임플란트 (Micromorphometric change of implant surface conditioned with tetracycline-HCI;HA and oxidized surface)

  • 안상호;박준봉;권영혁;허익;정종혁
    • Journal of Periodontal and Implant Science
    • /
    • 제35권4호
    • /
    • pp.891-905
    • /
    • 2005
  • The present study was performed to evaluate the effect of tetracycline-HCL on the change of implant surface microstructure according to application time. Implant with pure titanium machined surface. HA-coated surface and TiUniteTM surface were utilized. Implant surface was rubbed with 50mg/ml tetracycline-HCL solution for $\frac{1}{2}min.$, 1min., $1\frac{1}{2}min.$, 2min., and $2\frac{1}{2}min.$ respectively in the test group. Then, specimens were processed for scanning electron microscopic observation. The results of this study were as follows. 1. Both test and control group showed a few shallow grooves and ridges in pure titanium machined surface implants. There were not significant differences between two groups. 2. In HA-coated surfaces, round particles were deposited irregularly. The roughness of surfaces conditioned with tetracycline-HCL was lessened and the cracks were increased relative to the application time. 3. The anodic oxidized surfaces showed the craterous structures. The surface conditioning with tetracycline-HCl didn't influence on its micro-morphology. In conclusion, the detoxification with 50mg/ml tetracycline-HCL must be applied respectively with different time according to various implant surfaces.

생불활성 질화물 이온도금된 티타늄 임프란트의 표면특성 및 생체적합성 (Surface characteristics and biocompatibility of bioinert nitrides ion plated titanium implant)

  • 장갑성;김흥중;박주철;김병옥;한경윤
    • Journal of Periodontal and Implant Science
    • /
    • 제29권1호
    • /
    • pp.209-231
    • /
    • 1999
  • Even though titanium(Ti) and its alloys are the most used dental implant materials, there are some problems that Ti wears easily and interferes normal osteogenesis due to the metal ions. Ti coated with bioactive ceramics such as hydroxyapatite has also such problems as the exfoliation or resorption of the coated layer, Recent studies on implant materials have been proceeding to improve physical properties of the implant substrate and biocompatibility of the implant surfaces. The purpose of the present study was to examine the physical property and bone tissue compatibility of bioinert nitrides ion plated Ti, Button type specimens(14mm in diameter, 2.32rrun in height) for the abrasion test and cytotoxicity test and thread type implants(3.75mm in diameter, 6mm in length) for the animal experiments were made from Ti(grade 2) and 316LVM stainless steel. Ti specimens were ion plated with TiN, ZrN by the low temperature arc vapor deposition, and the depth profile of the TiN/Ti, ZrN/Ti ion plated surface was examined by Auger Electron Spectroscopy. Three kind of button type specimens .of TiN/Ti, ZrN/Ti and Ti were used for abrasion test, and HEPAlClC7 cells and CCD cells were cultivated for 4 days with the specimens for cytotoxicity test. Thread type implants of TiN/Ti, ZrN/Ti, Ti, 316LVM were implanted on the femur of 6 adult dogs weighing 10kg-13kg. Two dogs were sacrified for histological examination after 45 days and 90 days, and four dogs were sacrified for the removal torque test of the implant') after 90 days. The removal torque force was measured by Autograph (Shimadzu Co., AGS-1000D series, Japan). Abrasion resistance of TiN/Ti was the highest, and that of ZrN/Ti and Ti were followed. The bioinert nitride ion plated Ti had much better abrasion resistance, compared with Ti, In the cytotoxicity test, the number of both cells were increased in all specimens, and there were no significant difference in cytotoxic reaction among all groups (p>0.1), In histological examination, 316LVM showed the soft tissue engagement in interface between the implant and bone, but the other materials after 45 days noted immature new bone formation in the medullary portion along the implant surface, and those after 90 days showed implant support by new bone formation in both the cortical and the medullary portion, The removal torque force of Tilv/Ti showed significantly higher than that of Ti(p(O,05). The difference in removal torque force between TiN/Ti and ZrN/Ti was not significant(p>0.05), and that of 316LVM was lowest among all groups(p<0.05). These results suggest that bioinert nitrides ion plated Ti can resolve the existing problems of Ti and bioactive ceramics, and it may be clinically applicable to human.

  • PDF

지르코니아의 생체적합성과 임플란트로서의 생체활성에 대한 연구: In vivo 실험 문헌 고찰 (A review of biocompatibility of zirconia and bioactivity as a zirconia implant: In vivo experiment)

  • 서다원;김영균;이양진
    • 대한치과보철학회지
    • /
    • 제57권1호
    • /
    • pp.88-94
    • /
    • 2019
  • 심미적 치료에 대한 요구가 늘어나면서 높은 강도와 심미성을 갖는 지르코니아의 요구도 증가하고 있다. 이러한 흐름에 비추어 지르코니아의 생체적 합성을 평가하는 것은 중요한 일이다. 이번 논문에서는 지르코니아의 생체적합성에 대한 in vivo 실험에 대한 문헌 연구를 진행하였다. In vivo 실험에서 연조직, 경조직에 대한 지르코니아의 생체적합성을 확인할 수 있었다. 다양한 실험동물 및 환자에서 진행된 연구의 대다수에서 지르코니아의 높은 생체적합성이 보고되었으며, 신생골 합성 및 골부착의 면에서 티타늄과 유사한 성질을 보였다. 한편, 지르코니아는 임플란트로도 활용할 수 있다. 임플란트로 활용하기 위해 HA (hydroxyapatite)를 처리하여 생체활성을 높이는 다양한 방식이 제안되고 있다. 하지만 기존의 티타늄 임플란트에 HA를 코팅하는 방식은 낮은 결합강도 및 HA의 변성으로 인한 문제점이 있었기 때문에 HA-지르코니아 composite, HA-coated 지르코니아, HA-지르코니아 functionally graded material (FGM) 또는 알루미나 개재 HA-지르코니아 등의 새로운 방식이 연구되고 있다. 이러한 방식들은 보다 높은 결합강도를 지니고 있으며, 높은 생체적합성을 보여주고 있다.

Ti ball이 coating된 임플란트 core의 제조 (The Fabrication of Implant Core Coated with Ti Balls)

  • 최동진;박동기;박성범;박승식;파코드 뚜라예프;노재승;김성진;우흥식;김승언;이준희
    • 열처리공학회지
    • /
    • 제21권2호
    • /
    • pp.94-100
    • /
    • 2008
  • The implant prototypes with various porosities were fabricated by Spark Plasma Sintering of atomized spherical titanium balls. The interface was observed by optical microscope. Sintering temperature and holding time were selected at the point of big change of Z-axis ratio during sintering. These experiments show that Spark Plasma Sintering of spherical titanium balls can be efficiently used to produce implants surfaced with titanium balls with various porosities in a short time less than 120 seconds by manipulating the current condition such as z-axis, temperature and balls size.

Investigation of anodized titanium implants coated with triterpenoids extracted from black cohosh: an animal study

  • Park, In-Phill;Kang, Tae-Joo;Heo, Seong-Joo;Koak, Jai-Young;Kim, Ju-Han;Lee, Joo-Hee;Lee, Shin-Jae;Kim, Seong-Kyun
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권1호
    • /
    • pp.14-21
    • /
    • 2014
  • PURPOSE. The purpose of this study was to evaluate bone response to anodized titanium implants coated with the extract of black cohosh, Asarum Sieboldii, and pharbitis semen. MATERIALS AND METHODS. Forty anodized titanium implants were prepared as follows: group 1 was for control; group 2 were implants soaked in a solution containing triterpenoids extracted from black cohosh for 24 hours; group 3 were implants soaked in a solution containing extracts of black cohosh and Asarum Sieboldii for 24 hours; group 4 were implants soaked in a solution containing extracts of pharbitis semen for 24 hours. The implants from these groups were randomly and surgically implanted into the tibiae of ten rabbits. After 1, 2, and 4 weeks of healing, the nondecalcified ground sections were subjected to histological observation, and the percentage of bone-to-implant contact (BIC%) was calculated. RESULTS. All groups exhibited good bone healing with the bone tissue in direct contact with the surface of the implant. Group 2 ($52.44{\pm}10.98$, $25.54{\pm}5.56$) showed a significantly greater BIC% compared to that of group 3 ($45.34{\pm}5.00$, $22.24{\pm}2.20$) with respect to the four consecutive threads and total length, respectively. The BIC% of group 1 ($25.22{\pm}6.00$) was significantly greater than that of group 3 ($22.24{\pm}2.20$) only for total length. CONCLUSION. This study did not show any remarkable effects of the extract of black coshosh and the other natural products on osseointegration of anodized titanium implants as coating agents. Further studies about the application method of the natural products on to the surface of implants are required.

SURFACE ANALYSES OF TITANIUM SUBSTRATE MODIFIED BY ANODIZATION AND NANOSCALE Ca-P DEPOSITION

  • Lee, Joung-Min;Kim, Chang-Whe;Lim, Young-Jun;Kim, Myung-Joo
    • 대한치과보철학회지
    • /
    • 제45권6호
    • /
    • pp.795-804
    • /
    • 2007
  • Statement of problem. Nano-scale calcium-phosphate coating on the anodizing titanium surface using ion beam-assisted deposition (IBAD) has been recently introduced to improve the early osseointegration. However, not much is known about their surface characteristics that have influence on tissue-implant interaction. Purpose. This study was aimed to investigate microtopography, surface roughness, surface composition, and wettability of the titanium surface modified by the anodic oxidation and calcium phosphate coating using IBAD. Material and methods. Commercially pure titanium disks were used as substrates. The experiment was composed of four groups. Group MA surfaces represented machined surface. Group AN was anodized surface. Group CaP/AN was anodic oxidized and calcium phosphate coated surfaces. Group SLA surfaces were sandblasted and acid etched surfaces. The prepared titanium discs were examined as follows. The surface morphology of the discs was examined using SEM. The surface roughness was measured by a confocal laser scanning microscope. Phase components were analyzed using thin-film x-ray diffraction. Wettability analyses were performed by contact angle measurement with distilled water, formamide, bromonaphtalene and surface free energy calculation. Results. (1) The four groups showed specific microtopography respectively. Anodized and calcium phosphate coated specimens showed multiple micropores and tiny homogeneously distributed crystalline particles. (2) The order of surface roughness values were, from the lowest to the highest, machined group, anodized group, anodized and calcium phosphate deposited group, and sandblasted and acid etched group. (3) Anodized and calcium phosphate deposited group was found to have titanium and titanium anatase oxides and exhibited calcium phosphorous crystalline structures. (4) Surface wettability was increased in the order of calcium phosphate deposited group, machined group, anodized group, sandblasted and acid etched group. Conclusion. After ion beam-assisted deposition on anodized titanium, the microporous structure remained on the surface and many small calcium phosphorous crystals were formed on the porous surface. Nanoscale calcium phosphorous deposition induced roughness on the microporous surface but hydrophobicity was increased.

Histomorphometric Analysis of Two Types of Coated Implants : a Preliminary Study Using the Rabbit Tibia Model

  • Yeo, In-Sung;Lee, Hyo-Jung
    • Journal of Korean Dental Science
    • /
    • 제2권1호
    • /
    • pp.28-30
    • /
    • 2009
  • Purpose : The purpose of this pilot experiment was to evaluate early bone response in two types of coated implants using the rabbit tibia model. Materials and Methods : Screw type titanium implants manufactured with a calcium metaphosphate (CMP) coating and hydroxyapatite (HA) coating were placed in the tibiae of 3 New Zealand White rabbits. The bone responses at 2 weeks after insertion were evaluated and compared by histomorphometry. Results : There was no significant difference in bone-to-implant contact between the groups (P>.05). However, some qualitative differences on histologic views were found. Conclusions : CMP-coating is suggested to be the preferred candidate for fast osseointegration over HAcoating.

  • PDF