• Title/Summary/Keyword: tissue accumulation

Search Result 634, Processing Time 0.021 seconds

In vivo Study of the Renal Protective Effects of Capsosiphon fulvescens against Streptozotocin-induced Oxidative Stress (스트렙토조토신 유발 당뇨 쥐의 산화스트레스에 대한 매생이 추출물의 신장 보호 효과)

  • Nam, Mi-Hyun;Koo, Yun-Chang;Hong, Chung-Oui;Yang, Sung-Yong;Kim, Se-Wook;Jung, Hye-Lim;Lee, Hwa;Kim, Ji-Yeon;Han, Ah-Ram;Son, Won-Rak;Pyo, Min-Cheol;Lee, Kwang-Won
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.641-647
    • /
    • 2014
  • In this study, we evaluated the effect of Capsosiphon fulvescens extract (CFE) and its active compound, pheophorbide A (PhA), on diabetic kidney failure. Diabetes mellitus (DM) was induced by a single intraperitoneal injection of streptozotocin (STZ; 40 mg/kg body weight (BW)). After a week, the rats were orally administered CFE (4 and 20 mg/kg BW) or PhA (0.2 mg/kg BW) once a day for 9 weeks. After scarification, renal tissue samples were collected for biochemical and histochemical analyses. Our study showed that the treatment with CFE and PhA significantly decreased lipid peroxidation level and the activities of glutathione peroxidase and glutathione-S-transferase (p<0.05), but it increased glutathione level and the activities of glutathione reductase, superoxide dismutase, and catalase in the renal tissues (p<0.05). The CFE- and PhA-treated rats with DM showed improved histochemical appearance and decreased abnormal glycogen accumulation. Therefore, we suggest that PhA-containing CFE could exert renal protective effects against STZ-induced oxidative stress.

Hepatoprotective Effects of Semisulcospira libertine Hydrolysate on Alcohol-induced Fatty Liver in Mice (알코올성 지방간 유발 마우스에서 다슬기 유래 가수분해물의 간 보호 효과)

  • Song, Eun Jin;Cho, Kyoung Hwan;Choo, Ho Jin;Yang, Eun Young;Jung, Yoon Kyoung;Seo, Min Gyun;Kim, Jong Cheol;Kang, Eun Ju;Ryu, Gi Hyung;Park, Beom Yong;Hah, Young-Sool
    • Food Engineering Progress
    • /
    • v.21 no.4
    • /
    • pp.318-325
    • /
    • 2017
  • Alcoholic steatosis is a fundamental metabolic disorder and may precede the onset of more severe forms of alcoholic liver disease. In this study, we isolated enzymatichydrolysate from Semisulcospira libertine by alcalase hydrolysis and investigated the protective effect of Semisulcospira libertine hydrolysate on liver injury induced by alcohol in the mouse model of chronic and binge ethanol feeding (NIAAA). In an in vitro study, the hydrolysate protects HepG2 cells from ethanol toxicity. Liver damage was assessed by histopathological examination, as well as by quantitating activities of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP). After the administration of S. libertina hydrolysate, fat accumulation and infiltration of inflammatory cells in liver tissues were significantly decreased in the NIAAA mouse model. The elevated levels of serum AST, ALT, and ALP activities, along with the lipid contents of a damaged liver, were recovered in experimental mice administrated with S. libertina hydrolysate, suggesting its role in blood enzyme activation and lipid content restoration within damaged liver tissues. Moreover, treatment with S. libertine hydrolysate reduced the expression rate of cyclooxygenase (COX-2), interleukin $(IL)-1{\beta}$, and IL-6, which accelerate inflammation and induces tissue damage. All data showed that S. libertine hydrolysate has a preventive role against alcohol-induced liver damages by improving the activities of blood enzymes and modulating the expression of inflammation factor, suggesting S. libertine hydrolysate could be a commercially potential material for the restoration of hepatotoxicity.

Growth and Useful Component of Angelica gigas Nakai under High Temperature Stress (고온 스트레스에 따른 참당귀의 생육 및 유용성분 특성)

  • Jeong, Dae Hui;Kim, Ki Yoon;Park, Sung Hyuk;Jung, Chung Ryul;Jeon, Kwon Seok;Park, Hong Woo
    • Korean Journal of Plant Resources
    • /
    • v.34 no.4
    • /
    • pp.287-296
    • /
    • 2021
  • Recently, the pace of global climate change has tremendously increased, causing extreme damage to crop production. Here, we aimed to examine the growth characteristics and useful components of Angelica gigas under extreme heat stress, providing fundamental data for its efficient cultivation. Plants were exposed to various experimental temperatures (28℃, 34℃, and 40℃), and their growth characteristics and content of useful components were analyzed. At the experimental site, the ambient and soil temperature were 19.38℃ and 21.34℃, ambient and soil humidity were 81.3 % and 0.18 m3/m3, solar radiation was 162.05 W/m2. Moreover, the soil was sandy-clay-loam (pH 6.65), with 2.66% organic matter, 868.52 mg/kg soil available phosphate, and 0.14% nitrogen. Values of most growth characteristics, including the survival rate (85%), plant height (38.66cm), and fresh and dry weight (41.3 g and 14.24 g), were the highest at 28℃. Although the highest content of useful components was observed at 34℃ (3.24%), there were no significant differences across temperatures. Growth characteristics varied across temperatures due to detrimental effects of heat stress, such as accelerated tissue aging, reduced photosynthesis, and delay of growth. Similar content of useful components across temperatures may be due to poor accumulation of anabolic products caused by impaired growth at extremely high temperatures.

Studies on the Shade Tolerance, Light Requirement, and Water Relations of Economic Tree Species(III) - Analysis of Pressure-Volume Curves on the Changes of Tissue Water Relations of Five Deciduous Hardwood Species Subjected to Artificial Shading Treatments - (주요경제수종(主要經濟樹種)의 내음성(耐陰性) 및 광선요구도(光線要求度)와 수분특성(水分特性)에 관한 연구(III) - 인공피음처리하(人工被陰處理下)에서 자라는 활엽수(闊葉樹) 5수종(樹種)의 수분특성(水分特性) 변화(變化)에 대한 P-V곡선(曲線) 분석(分析) -)

  • Choi, Jeong Ho;Kwon, Ki Won
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.4
    • /
    • pp.524-534
    • /
    • 2001
  • The pressure-volume curve parameters were investigated to elucidate the effects of shading treatment on the water relations of the one year old seedlings of Betula platyphylla var. japonica, Betula schmidtii, Zelkova serrata, Acer mono and Prunes sargentii subjected to five levels of artificial shading treatments. The osmotic potentials at full turgor(${\phi}_{{\pi}o}$) measured under full sunlight changed with species and growing season in the ranges of -1.04~-1.27MPa, -1.03~-1.48MPa, -0.94~-1.44MPa in first year treatment, and -0.90~-1.37MPa, -1.05~-1.79MPa, -0.99~-1.30MPa in second year treatment in June, July, and September, respectively. The osmotic potentials at full turgor increased with increment of shading level in the ranges of -0.90~-1.79MPa in full sunlight and -0.58~-1.23MPa in nearly full shading level(E) through the growing seasons in all the species studied. The osmotic potentials at turgor loss point(${\phi}_{{\pi}p}$) measured in full sunlight changed in the ranges of -1.64~-2.11MPa, -1.67~-2.15MPa, -1.47~-2.11MPa, and -1.45~-2.04MPa, -1.30~-2.00MPa, -1.28~-2.33MPa in June, July, and September of first and second years, respectively. Most of ${\phi}_{{\pi}p}$ measurements were lower within about 0.5MPa in comparison with those of ${\phi}_{{\pi}o}$. The measurements of ${\phi}_{{\pi}p}$ also increased with increment of shading level, and the differences in ${\phi}_{{\pi}p}$ among shading levels were generally greater than those in ${\phi}_{{\pi}o}$ by species and by growing season. Most of the osmotic potentials at turgor loss point as like as at full turgor were lowered in July than in June and September. The measurements of relative water content at turgor lass point(RWCp) in full sunlight were in the similar ranges of 81~88%, 71~86%, 75~84%, and 82~87, 72~84%, 76~86% in June, July, and September of first and second years, respectively. The RWCp were a little higher in A. mono and P. sargentii than in B. platyphylla var. japonica, B. schmidtii, and Z. serrata. The RWCp also decreased from 71~88% in full sunlight to 48~77% in nearly full shading treatment with increment of shading level. Even if there were some exceptions by species or by growing season, the shading effects on the changes in some P-V parameters were distinctly observed in the present study. The change in P-V parameters following shading treatment may be presumably inferred on the changes in solute accumulation, membrane elasticity, symplasmic water volume, and so on. But much more experiments should be necessarily continued for getting detailed informations on the physiological mechanism of shading effects relating to the changes in P-V parameters.

  • PDF