• Title/Summary/Keyword: tire waste

Search Result 161, Processing Time 0.024 seconds

Properties of recycled green building materials applied in lightweight aggregate concrete

  • Wang, Her-Yung;Hsiao, Darn-Horng;Wang, Shi-Yang
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.95-104
    • /
    • 2012
  • This study uses recycled green building materials based on a Taiwan-made recycled mineral admixture (including fly ash, slag, glass sand and rubber powder) as replacements for fine aggregates in concrete and tests the properties of the resulting mixtures. Fine aggregate contents of 5% and 10% were replaced by waste LCD glass sand and waste tire rubber powder, respectively. According to ACI concrete-mixture design, the above materials were mixed into lightweight aggregate concrete at a constant water-to-binder ratio (W/B = 0.4). Hardening (mechanical), non-destructive and durability tests were then performed at curing ages of 7, 28, 56 and 91 days and the engineering properties were studied. The results of these experiments showed that, although they vary with the type of recycling green building material added, the slumps of these admixtures meet design requirements. Lightweight aggregate yields better hardened properties than normal-weight concrete, indicating that green building materials can be successfully applied in lightweight aggregate concrete, enabling an increase in the use of green building materials, the improved utilization of waste resources, and environmental protection. In addition to representing an important part of a "sustainable cycle of development", green building materials represent a beneficial reutilization of waste resources.

Development of Elastic Composites Using Waste Tire Chip and Epoxy Resin - Focused on Strength and Durability - (폐타이어 칩 및 에폭시를 활용한 탄성 복합체의 개발 - 강도와 내구성을 중심으로 -)

  • Sung, Chan Yong;Noh, Jin Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.1
    • /
    • pp.19-26
    • /
    • 2016
  • This study was performed to evaluate the strength and durability properties of modified epoxy composites with waste tire chip, recycled coarse aggregate, filler and modified epoxy to improve elongation and elasticity of epoxy. Additionally, for comparing to modified epoxy and unsaturated polyester resin as a binder, unsaturated polyester resin composites were developed in the same condition. The mix proportions were determined to satisfy the requirement for the workability and slump according to aggregate size and binder content. Tests for the compressive and flexural strength, freezing and thawing and durability for 20 % sulfuric solution were performed. The compressive and flexural strength of modified epoxy composites were in the range of 34.9~61.6 MPa and 10.2~18.3 MPa at the curing 7 days, respectively. Also, the compressive and flexural strength of unsaturated polyester resin composites were in the range of 44.2~77.8 MPa and 11.3~20.8 MPa at the curing 7 days, respectively. After 300 cycles of freezing and thawing, weight decrease ratio and durability factor of modified epoxy composites were in the range of 0.8~1.9 % and 95~98, respectively. Accordingly, modified epoxy composites will greatly improve the durability of concrete.

Experimental Study on the Strength of Concrete Specimens Mixed with Tire Chips (폐타이어 입자혼입 콘크리트의 강도별 특성 실험)

  • Son, Ki-Sang
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.2 s.70
    • /
    • pp.84-90
    • /
    • 2005
  • This study is to use results of the experiment on the influence to the strength by mixing powders of wasted tires into regular remicon within a range of little effectiveness in durability, applicability, economic aspect, and workability, to put it to practical use and to apply as basic data from a view of recycling wasted tires as construction materials. And the concrete, which was mixed with 10mm particles with ratio of $0.5\%\;and\;1.0\%$ respectively at 270 of mixing strength, was reduced by $27\%$ in compressive strength compared to normal concrete, whereas concrete mixed with other than 10mm particles showed lower decrease ratio compared to the former by reducing only $1.0\%\~1.5\%$. it is found that as strength increases, the less in quantity of aggregate and the more increase in quantity of cement. When considered to the above result, it is estimated that concrete mixed with wasted tire particles could be better used in conditions of compressive force rather than tensile force, and could also be used for structures with flexural strengths as well. In conclusion, higher strengths could be made using waste tire mix.

A study on the Characteristic of Waste Ground Rubber Tire Powders with Pre-treatment Process for Recycling (전처리 공정에 따른 폐타이어 재생 고무분말의 특성연구)

  • Park, Jongmoon;An, Ju-Young;Park, Jin-Eui;Bang, DaeSuk;Kim, Bong-Suk;Oh, Myung-Hoon
    • Resources Recycling
    • /
    • v.24 no.2
    • /
    • pp.55-61
    • /
    • 2015
  • In this study, mechanical properties of waste ground rubber tire powder were investigated to evaluate the influence of pre-treatment process for recycling. The tensile test, fracture test and morphology observation were carried out using various kinds of waste ground tire powders, which were produced by grinding and devulcanization process, respectively. As a results, it was found that the produced rubber powder through grinding process increased its tensile strength and elongation with decreasing particle size because of decreasing surface area. Devulcanized rubber powder also increased its tensile strength and elongation by de-crosslink with sulfur. It could be also suggested that devulcanization treatment after grinding process was more efficient recycling process for both increasing tensile property and fracture elongation of waste ground rubber tire powders.

Utilization of Waste Tires as Soil Reinforcement; (2) Environmental Effects (지반보강재로서 폐타이어의 활용; (2) 환경적 영향)

  • 윤여원;문창만;김건흥
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.119-128
    • /
    • 2004
  • Environmental impact of waste tires as gound-reinforcing material is studied. Analysis for chemical compounds and toxic effect were performed on effluents from twelve lysimeters in which waste tires were mixed with sand and three initially different environmental solutions of acidic, neutral, and basic circulated through the mixture. The test results of effluents collected from the lysimeters provided that the contaminant concentrations were lower than those of Korean drinking water standards for all the selected and tested metal elements. While iron concentration increased slightly with the exposure period, other metal concentrations decreased with the number of circulation times. From the comparison with previous investigations, the contaminant concentration decreased with the increase of tire size, i.e. increases with the increase of the exposed surface of tire metals. From the toxicity tests, no deteriorative effect was observed and it could be concluded that waste tires are not biologically hostile materials.

To Study the Effect on Concrete Strength by Adding Waste Rubber Material from Worn Out Tires

  • Aleem, Muhammad;Ejaz, Naeem;Janjua, Nasir Sadiq;Gill, Tanveer;Sadiq, Muhammad Yasir
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.694-701
    • /
    • 2022
  • This paper introduces a study of concrete structures with a broken tire and a flat tire as a complete overhaul. The materials used to make concrete in this study are solid aggregate, cement, sand, flat tire, broken wheel, drinking water, and Ordinary Portland Cement. A total of 6 main compounds were thrown into solid cylinders and replaced by 0% as a controller followed by 5% and 10%. The cylinder pressure test of the concrete is done by applying the same pressure to the cylinders until a failure occurs. The results of the pressure test show that by applying 5% aggregation the pressure decreases. In Crumb wheel joints, the compression force decreases constantly as the percentage change increases. Therefore, the crumb wheel is not recommended for use as a complete replacement due to its compressive church power.

  • PDF

A Study on the Basic and Compression Characteristics of Lightweight Waste for Use as Fill Materials (성토재 적용을 위한 경량폐기물의 기본물성 및 압축특성 연구)

  • Lee, Sung-Jin;Kim, Yun-Ki;Koh, Tae-Hoon;Lee, Su-Hyung;Shin, Min-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.5
    • /
    • pp.61-74
    • /
    • 2011
  • This is a fundamental research on use as fill material of lightweight waste such as bottom ash and tire shred. We carried out the test for particle size distribution, specific gravity, density, shear strength, permeability and vertical compression settlement, considering water content change and temperature effect of several waste materials. Bottom ash, which is lighter than soils, has similar permeability and particle size distribution to those of weathered soils. But permeability may differ depending on the particle size distribution. The shear strength aspect of bottom ash and tire shred mixed materials are similar to that of natural fill materials. In the 1-D vertical compression settlement test, we could be assured that bottom ash and tire shred mixed materials showed similar compression settlement to that of sand under actual vertical stress. Furthermore, materials including bottom ash showed smaller compression settlement than that of weathered soils in the long-term settlement test under wetting and freezing-thawing condition.

Pyrolytic Gasification Characteristics of Waste Tires and Waste Synthetic Resins (폐타이어 및 폐합성수지류의 건류가스화 특성)

  • 노남선;김광호;신대현;김동찬
    • Resources Recycling
    • /
    • v.9 no.1
    • /
    • pp.27-35
    • /
    • 2000
  • Characteristics of pyrolytic gasification were examined for the waste tire and 7 types of waste synthetic resin, using a bench scale experimental facility. the product gas temperature of waste tires was $150~300^{\circ}C$ and the temperature profile in the combustion zone of the lower reactor part tended to be clearly distinguished from that in the gasification zone of the upper part. However, in the case of waste synthetic resins, there were no clear distinction and temperature fluctuation was severe, depending on the reaction time. Product gas quantity, which depends on that of supplied (1st) air, was found to be 105~135% of the 1st air amount at the steady state. The concentration of noncombustible components in product gas was 80~90 vol.% and the high heating value of the product gas calculated from gas compositions was 1,500~3,000 kcal/N㎥ for waste tire, and 300~2,900 kcal/N㎥ for waste synthetic resins, respectively. Heating value of product gas and combustible gas concentration were increased in proportion to 1st air amount when 1st air amount is below $0.35N\textrm{m}^3$/min.

  • PDF

A Study of Application on Waste Tire Blocks Filled with Concrete (폐타이어 콘크리트 블록의 활용 방안에 관한 연구)

  • Shinl, Eun-Chul;Lee, Chang-Sub
    • Journal of the Korean Geosynthetics Society
    • /
    • v.2 no.2
    • /
    • pp.25-31
    • /
    • 2003
  • Most recently, environmental problems arise from management waste tires by increasing number of automobiles. Waste tires are not compressible and not easy for degradation in landfill. Even if it were landfill, it is difficult to treat. Total amount of waste tires is about 20 million per year and the collection is 68.6% in this country. Structure of slope stability using waste tire blocks filled with concrete increases durability, reduce construction period, and it can be utilized as an example. Therefore, it reduces the volume of waste and recycles waste. Also, it prevents the air pollution due to the incineration and creates economic value.

  • PDF

Effects of Ultrasonic Treatment and Particle Size on Mechanical Properties of Waste Polypropylene/WGRT Composites (초음파 처리와 분말 크기가 재생 폴리프로필렌/폐타이어 분말 복합체의 기계적 특성에 미치는 영향)

  • Kim, Donghak;Kim, Seonggil;Lee, Minji;Park, Jong-Moon;Oh, Myung-Hoon;Kim, Bong-Suk;Kim, Jinkuk;Bang, Daesuk
    • Resources Recycling
    • /
    • v.24 no.2
    • /
    • pp.36-45
    • /
    • 2015
  • In this study, various sizes of waste ground rubber tire (WGRT) were devulcanized by a single screw extruder equipped with a sonicator in front of the die, and waste PP and devulcanized waste ground rubber tire (DWGRT) composites were prepared by an intermeshing co-rotating twin screw extruder. The crosslink density and percent devulcanization of WGRT and DWGRT for 40, 80 and 140 meshes were calculated. The mechanical properties of the composites were compared with each other. The effect of SEBS-g-MA as a compatibilizer was investigated on mechanical properties of both waste PP/WGRT and waste PP/DWGRT composites. The crosslink density was decreased with decreasing the WGRT size. On the other hand, the percent devulcanization was increased by adding the smaller size of WGRT. Also, tensile strength, impact strength and elongation at break of the composite with DWGRT were higher than those with WGRT. Especially, mechanical properties of the composites were significantly increased by adding the smaller size of WGRT and DWGRT. Addition of SEBS-g-MA into both waste PP/(D)WGRT composites exhibited better impact strength and elongation at break than the composites themselves.