• 제목/요약/키워드: timelike surfaces

Search Result 10, Processing Time 0.025 seconds

SPACELIKE MAXIMAL SURFACES, TIMELIKE MINIMAL SURFACES, AND BJÖRLING REPRESENTATION FORMULAE

  • Kim, Young-Wook;Koh, Sung-Eun;Shin, Hea-Yong;Yang, Seong-Deog
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.5
    • /
    • pp.1083-1100
    • /
    • 2011
  • We show that some class of spacelike maximal surfaces and timelike minimal surfaces match smoothly across the singular curve of the surfaces. Singular Bj$\"{o}$rling representation formulae for generalized spacelike maximal surfaces and for generalized timelike minimal surfaces play important roles in the explanation of this phenomenon.

A GEOMETRIC APPROACH TO TIMELIKE FLOWS IN TERMS OF ANHOLONOMIC COORDINATES

  • Yavuz, Ayse;Erdogdu, Melek
    • Honam Mathematical Journal
    • /
    • v.44 no.2
    • /
    • pp.259-270
    • /
    • 2022
  • This paper is devoted to the geometry of vector fields and timelike flows in terms of anholonomic coordinates in three dimensional Lorentzian space. We discuss eight parameters which are related by three partial differential equations. Then, it is seen that the curl of tangent vector field does not include any component in the direction of principal normal vector field. This implies the existence of a surface which contains both s - lines and b - lines. Moreover, we examine a normal congruence of timelike surfaces containing the s - lines and b - lines. Considering the compatibility conditions, we obtain the Gauss-Mainardi-Codazzi equations for this normal congruence of timelike surfaces in the case of the abnormality of normal vector field is zero. Intrinsic geometric properties of these normal congruence of timelike surfaces are obtained. We have dealt with important results on these geometric properties.

THE RELATIONS BETWEEN NULL GEODESIC CURVES AND TIMELIKE RULED SURFACES IN DUAL LORENTZIAN SPACE 𝔻31

  • Unluturk, Yasin;Yilmaz, Suha;Ekici, Cumali
    • Honam Mathematical Journal
    • /
    • v.41 no.1
    • /
    • pp.185-195
    • /
    • 2019
  • In this work, we study the conditions between null geodesic curves and timelike ruled surfaces in dual Lorentzian space. For this study, we establish a system of differential equations characterizing timelike ruled surfaces in dual Lorentzian space by using the invariant quantities of null geodesic curves on the given ruled surfaces. We obtain the solutions of these systems for special cases. Regarding to these special solutions, we give some results of the relations between null geodesic curves and timelike ruled surfaces in dual Lorentzian space.

NON-DEVELOPABLE RULED SURFACES WITH TIMELIKE RULING IN MINKOWSKI 3-SPACE

  • YANG, YUN;YU, YANHUA
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.1339-1351
    • /
    • 2015
  • In this paper, using pseudo-spherical Frenet frame of pseudo-spherical curves in hyperbolic space, we define the notion of the structure functions on the non-developable ruled surfaces with timelike ruling. Then we obtain the properties of the structure functions and a complete classification of the non-developable ruled surfaces with timelike ruling in Minkowski 3-space by the theories of the structure functions.

A NEW CONSTRUCTION OF TIMELIKE RULED SURFACES WITH CONSTANT DISTELI-AXIS

  • Abdel-Baky, Rashad A.;Unluturk, YasIn
    • Honam Mathematical Journal
    • /
    • v.42 no.3
    • /
    • pp.551-568
    • /
    • 2020
  • In this study, we construct timelike ruled surfaces whose Disteli-axis is constant in Minkowski 3-space 𝔼31. Then we attain a general system characterizing these surfaces, and also give necessary and sufficient conditions for a timelike ruled surface to get a constant Disteli-axis.

TIMELIKE TUBULAR SURFACES OF WEINGARTEN TYPES AND LINEAR WEINGARTEN TYPES IN MINKOWSKI 3-SPACE

  • Chenghong He;He-jun Sun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.2
    • /
    • pp.401-419
    • /
    • 2024
  • Let K, H, KII and HII be the Gaussian curvature, the mean curvature, the second Gaussian curvature and the second mean curvature of a timelike tubular surface Tγ(α) with the radius γ along a timelike curve α(s) in Minkowski 3-space E31. We prove that Tγ(α) must be a (K, H)-Weingarten surface and a (K, H)-linear Weingarten surface. We also show that Tγ(α) is (X, Y)-Weingarten type if and only if its central curve is a circle or a helix, where (X, Y) ∈ {(K, KII), (K, HII), (H, KII), (H, HII), (KII , HII)}. Furthermore, we prove that there exist no timelike tubular surfaces of (X, Y)-linear Weingarten type, (X, Y, Z)-linear Weingarten type and (K, H, KII, HII)-linear Weingarten type along a timelike curve in E31, where (X, Y, Z) ∈ {(K, H, KII), (K, H, HII), (K, KII, HII), (H, KII, HII)}.

CONSTANT CURVATURES AND SURFACES OF REVOLUTION IN L3

  • Kang, Ju-Yeon;Kim, Seon-Bu
    • Honam Mathematical Journal
    • /
    • v.38 no.1
    • /
    • pp.151-167
    • /
    • 2016
  • In Minkowskian 3-spacetime $L^3$ we find timelike or spacelike surface of revolution for the given Gauss curvature K = -1, 0, 1 and mean curvature H = 0. In fact, we set up the surface of revolution with the time axis for z-axis to be able to draw those surfaces on standard pictures in Minkowskian 3-spacetime $L^3$.

BERTRAND CURVES AND RAZZABONI SURFACES IN MINKOWSKI 3-SPACE

  • Xu, Chuanyou;Cao, Xifang;Zhu, Peng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.377-394
    • /
    • 2015
  • In this paper, we generalize some results about Bertrand curves and Razzaboni surfaces in Euclidean 3-space to the case that the ambient space is Minkowski 3-space. Our discussion is divided into three different cases, i.e., the parent Bertrand curve being timelike, spacelike with timelike principal normal, and spacelike with spacelike principal normal. For each case, first we show that Razzaboni surfaces and their mates are related by a reciprocal transformation; then we give B$\ddot{a}$cklund transformations for Bertrand curves and for Razzaboni surfaces; finally we prove that the reciprocal and B$\ddot{a}$cklund transformations on Razzaboni surfaces commute.

LORENTZIAN SURFACES WITH CONSTANT CURVATURES AND TRANSFORMATIONS IN THE 3-DIMENSIONAL LORENTZIAN SPACE

  • Park, Joon-Sang
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.1
    • /
    • pp.41-61
    • /
    • 2008
  • We study Lorentzian surfaces with the constant Gaussian curvatures or the constant mean curvatures in the 3-dimensional Lorentzian space and their transformations. Such surfaces are associated to the Lorentzian Grassmannian systems and some transformations on such surfaces are given by dressing actions on those systems.

BJÖRLING FORMULA FOR MEAN CURVATURE ONE SURFACES IN HYPERBOLIC THREE-SPACE AND IN DE SITTER THREE-SPACE

  • Yang, Seong-Deog
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.159-175
    • /
    • 2017
  • We solve the $Bj{\ddot{o}}rling$ problem for constant mean curvature one surfaces in hyperbolic three-space and in de Sitter three-space. That is, we show that for any regular, analytic (and spacelike in the case of de Sitter three-space) curve ${\gamma}$ and an analytic (timelike in the case of de Sitter three-space) unit vector field N along and orthogonal to ${\gamma}$, there exists a unique (spacelike in the case of de Sitter three-space) surface of constant mean curvature 1 which contains ${\gamma}$ and the unit normal of which on ${\gamma}$ is N. Some of the consequences are the planar reflection principles, and a classification of rotationally invariant CMC 1 surfaces.